論文の概要: HEAD: A Bandwidth-Efficient Cooperative Perception Approach for Heterogeneous Connected and Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2408.15428v1
- Date: Tue, 27 Aug 2024 22:05:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:32:58.868130
- Title: HEAD: A Bandwidth-Efficient Cooperative Perception Approach for Heterogeneous Connected and Autonomous Vehicles
- Title(参考訳): HEAD:不均一連結・自律走行車における帯域効率の良い協調知覚アプローチ
- Authors: Deyuan Qu, Qi Chen, Yongqi Zhu, Yihao Zhu, Sergei S. Avedisov, Song Fu, Qing Yang,
- Abstract要約: HEADは3次元物体検出ネットワークにおける分類と回帰ヘッドの特徴を融合する手法である。
実験の結果,HEADは通信帯域幅と知覚性能を効果的にバランスさせる融合法であることがわかった。
- 参考スコア(独自算出の注目度): 9.10239345027499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cooperative perception studies, there is often a trade-off between communication bandwidth and perception performance. While current feature fusion solutions are known for their excellent object detection performance, transmitting the entire sets of intermediate feature maps requires substantial bandwidth. Furthermore, these fusion approaches are typically limited to vehicles that use identical detection models. Our goal is to develop a solution that supports cooperative perception across vehicles equipped with different modalities of sensors. This method aims to deliver improved perception performance compared to late fusion techniques, while achieving precision similar to the state-of-art intermediate fusion, but requires an order of magnitude less bandwidth. We propose HEAD, a method that fuses features from the classification and regression heads in 3D object detection networks. Our method is compatible with heterogeneous detection networks such as LiDAR PointPillars, SECOND, VoxelNet, and camera Bird's-eye View (BEV) Encoder. Given the naturally smaller feature size in the detection heads, we design a self-attention mechanism to fuse the classification head and a complementary feature fusion layer to fuse the regression head. Our experiments, comprehensively evaluated on the V2V4Real and OPV2V datasets, demonstrate that HEAD is a fusion method that effectively balances communication bandwidth and perception performance.
- Abstract(参考訳): 協調的知覚研究においては、通信帯域幅と知覚性能の間にはトレードオフがあることが多い。
現在の機能融合ソリューションは、優れたオブジェクト検出性能で知られているが、中間機能マップ全体の送信にはかなりの帯域幅が必要である。
さらに、これらの融合アプローチは、通常同じ検出モデルを使用する車両に限られる。
我々のゴールは、センサーの異なる車両間で協調的な知覚を支援するソリューションを開発することである。
本手法は、最先端の中間核融合と同様の精度を達成しつつ、遅延核融合技術と比較して知覚性能を向上させることを目的としているが、帯域幅は桁違いに少ない。
本稿では,3次元物体検出ネットワークの分類と回帰ヘッドから特徴を融合するHEADを提案する。
本手法は,LiDAR PointPillars,SECOND,VoxelNet,カメラBird's-eye View (BEV) Encoderなどの異種検出ネットワークと互換性がある。
検出ヘッドの自然に小さい特徴量を考えると、分類ヘッドと相補的特徴融合層を融合させて回帰ヘッドを融合させる自己認識機構を設計する。
V2V4RealとOPV2Vデータセットを総合的に評価した結果,HEADは通信帯域幅と知覚性能を効果的にバランスさせる融合法であることがわかった。
関連論文リスト
- CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
本稿では,新しいdetextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) 機構を提案する。
まず,非対称な特徴分離戦略を提案し,非対称的に学習プロセスを局所帰納バイアスと長距離依存に分解する。
分離学習方式を採用し,特徴間の相補性を完全に活用することにより,高い効率性と精度を両立させることができる。
論文 参考訳(メタデータ) (2024-11-25T07:56:13Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - MR3D-Net: Dynamic Multi-Resolution 3D Sparse Voxel Grid Fusion for LiDAR-Based Collective Perception [0.5714074111744111]
MR3D-Netは,LiDARに基づく集団認識のための動的マルチレゾリューション3次元スパースボクセルグリッド融合バックボーンアーキテクチャである。
本研究では,様々な解像度の分散ボクセルグリッドが,通信帯域に適応できる有意義でコンパクトな環境表現を提供することを示す。
論文 参考訳(メタデータ) (2024-08-12T13:27:11Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
異なるモダリティから情報を融合するクロスモダリティは、オブジェクト検出性能を効果的に向上させる。
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction。
提案手法は,m3FD$が5.9%,FLIRデータセットが4.9%,m3FD$が5.9%である。
論文 参考訳(メタデータ) (2024-04-14T05:28:46Z) - Cooperative Perception with Learning-Based V2V communications [11.772899644895281]
本研究は,コミュニケーションチャネル障害に対する協調認識会計の性能を解析する。
中間特性のロバスト性を活用するために, 新たなレイトフュージョン方式を提案する。
協調によって生じるデータサイズを圧縮するために、畳み込みニューラルネットワークベースのオートエンコーダを採用する。
論文 参考訳(メタデータ) (2023-11-17T05:41:23Z) - V2X-AHD:Vehicle-to-Everything Cooperation Perception via Asymmetric
Heterogenous Distillation Network [13.248981195106069]
車両間協調認識システム(V2X-AHD)を提案する。
この研究によると、V2X-AHDは3次元物体検出の精度を効果的に向上し、ネットワークパラメータの数を削減できる。
論文 参考訳(メタデータ) (2023-10-10T13:12:03Z) - Practical Collaborative Perception: A Framework for Asynchronous and
Multi-Agent 3D Object Detection [9.967263440745432]
咬合は、LiDARベースのオブジェクト検出方法において大きな課題である。
最先端のV2X手法は、中間協調手法を用いて性能帯域幅のトレードオフを解消する。
我々は,従来の方法よりも帯域幅と性能のトレードオフを向上する,シンプルで効果的な協調手法を考案した。
論文 参考訳(メタデータ) (2023-07-04T03:49:42Z) - Adaptive Feature Fusion for Cooperative Perception using LiDAR Point
Clouds [0.0]
協調認識により、コネクテッド・オートモービルは近隣の他のCAVと対話することができる。
盲点、低解像度、気象効果などの従来の車体知覚の限界を補うことができる。
CODDデータセットを用いた車両と歩行者の両方の協調認識性能の評価を行った。
論文 参考訳(メタデータ) (2022-07-30T01:53:05Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with
Transformers [49.689566246504356]
そこで本研究では,LiDAR-カメラ融合に対するソフトアソシエーション機構による堅牢な解であるTransFusionを提案する。
TransFusionは大規模データセット上で最先端のパフォーマンスを実現する。
提案手法を3次元トラッキングタスクに拡張し,nuScenesトラッキングのリーダーボードにおける第1位を達成する。
論文 参考訳(メタデータ) (2022-03-22T07:15:13Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。