論文の概要: SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models
- arxiv url: http://arxiv.org/abs/2408.15565v1
- Date: Wed, 28 Aug 2024 06:33:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:03:09.237292
- Title: SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models
- Title(参考訳): SIaM:大規模言語モデルの自己改善型コード支援数学的推論
- Authors: Dian Yu, Baolin Peng, Ye Tian, Linfeng Song, Haitao Mi, Dong Yu,
- Abstract要約: 本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
- 参考スコア(独自算出の注目度): 54.78329741186446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing trend of teaching large language models (LLMs) to solve mathematical problems through coding. Existing studies primarily focus on prompting powerful, closed-source models to generate seed training data followed by in-domain data augmentation, equipping LLMs with considerable capabilities for code-aided mathematical reasoning. However, continually training these models on augmented data derived from a few datasets such as GSM8K may impair their generalization abilities and restrict their effectiveness to a narrow range of question types. Conversely, the potential of improving such LLMs by leveraging large-scale, expert-written, diverse math question-answer pairs remains unexplored. To utilize these resources and tackle unique challenges such as code response assessment, we propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation. We also explore different alignment algorithms with self-generated instruction/preference data to foster continuous improvement. Experiments across both in-domain (up to +5.7%) and out-of-domain (+4.4%) benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
- Abstract(参考訳): コーディングによる数学的問題を解決するために,大規模言語モデル(LLM)を教える傾向が高まっている。
既存の研究は主に、強力なクローズドソースモデルによるシードトレーニングデータの生成と、ドメイン内のデータ拡張に重点を置いており、コード支援数学的推論に相当な能力を持つLLMを搭載している。
しかしながら、GSM8Kのような少数のデータセットから得られた拡張データに基づいてこれらのモデルを継続的にトレーニングすることは、一般化能力を損なう可能性があり、その効果を限定的な質問タイプに制限する可能性がある。
逆に、大規模で専門家が書いた多種多様な質問応答ペアを活用することで、そのようなLLMを改善する可能性については、未解明のままである。
これらの資源を活用し,コード応答評価などのユニークな課題に対処するために,コードベースの批判モデルを用いて質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
また、継続的改善を促進するために、自己生成型命令/参照データを用いたアライメントアルゴリズムについても検討する。
ドメイン内(+5.7%)とドメイン外(+4.4%)の両方の実験は、提案されたパラダイムの有効性を実証している。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
本稿では,ソースコードの脆弱性検出における大規模言語モデルの機能について,徹底的に解析する。
我々は6つの汎用LCMに対して脆弱性検出を特別に訓練した6つのオープンソースモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-08-29T10:00:57Z) - Benchmarking Large Language Models for Math Reasoning Tasks [12.91916443702145]
我々は、4つの強力な基礎モデル上の5つの広く使われている数学的データセットの数学的問題解決のための、最先端の文脈内学習アルゴリズムを7つ比較した。
以上の結果から, GPT-4o や LLaMA 3-70B のような大規模基盤モデルでは, 具体的なプロンプト戦略とは独立に数学的推論を解くことが可能であることが示唆された。
将来の研究で追加モデルの統合をサポートするために、ベンチマークコードをオープンソースにしています。
論文 参考訳(メタデータ) (2024-08-20T13:34:17Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
推論タスクでは、小さなエラーでも不正確な結果にカスケードすることができる。
入力の摂動に頼らず、外部リソースの導入を避ける手法を開発した。
私たちのトレーニングアプローチでは、思考の連鎖の中で特定のトークンをランダムにマスクします。
論文 参考訳(メタデータ) (2024-03-04T16:21:54Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenieは、小規模の問題解決データセットから多様で信頼性の高い数学問題を生成する新しい方法である。
7Bから70Bまでの各種事前学習モデルについて, 提案手法の有効性を検証するために, 新たなキュレートデータを用いて訓練を行った。
MathGenieLM-InternLM2はGSM8Kで87.7%、MATHで55.7%の精度を達成し、オープンソース言語モデルで最高のスコアを確保している。
論文 参考訳(メタデータ) (2024-02-26T07:17:25Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
我々は,大規模言語モデル(LLM)の本質的な性質が,数学的推論のモデル化における課題を提起していると仮定する。
本稿では,Pythonコードインタプリタを利用した新しい数学データセットを提案する。
本稿では,数学固有のLLMの微調整のための仮的かつ容易に複製可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2024-01-16T08:08:01Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。