論文の概要: Skills Regularized Task Decomposition for Multi-task Offline Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2408.15593v1
- Date: Wed, 28 Aug 2024 07:36:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:53:03.855801
- Title: Skills Regularized Task Decomposition for Multi-task Offline Reinforcement Learning
- Title(参考訳): マルチタスクオフライン強化学習のための正規化タスク分割
- Authors: Minjong Yoo, Sangwoo Cho, Honguk Woo,
- Abstract要約: 多様なオフラインデータセットを持つ強化学習(RL)は、複数のタスクの関係を活用する利点がある。
異なる品質の行動ポリシーによって生成される異種データセットに対して,スキルベースのマルチタスクRL手法を提案する。
我々のマルチタスクオフラインRLアプローチは、異なる品質データセットの混合構成に対して堅牢であることを示す。
- 参考スコア(独自算出の注目度): 11.790581500542439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) with diverse offline datasets can have the advantage of leveraging the relation of multiple tasks and the common skills learned across those tasks, hence allowing us to deal with real-world complex problems efficiently in a data-driven way. In offline RL where only offline data is used and online interaction with the environment is restricted, it is yet difficult to achieve the optimal policy for multiple tasks, especially when the data quality varies for the tasks. In this paper, we present a skill-based multi-task RL technique on heterogeneous datasets that are generated by behavior policies of different quality. To learn the shareable knowledge across those datasets effectively, we employ a task decomposition method for which common skills are jointly learned and used as guidance to reformulate a task in shared and achievable subtasks. In this joint learning, we use Wasserstein auto-encoder (WAE) to represent both skills and tasks on the same latent space and use the quality-weighted loss as a regularization term to induce tasks to be decomposed into subtasks that are more consistent with high-quality skills than others. To improve the performance of offline RL agents learned on the latent space, we also augment datasets with imaginary trajectories relevant to high-quality skills for each task. Through experiments, we show that our multi-task offline RL approach is robust to the mixed configurations of different-quality datasets and it outperforms other state-of-the-art algorithms for several robotic manipulation tasks and drone navigation tasks.
- Abstract(参考訳): 多様なオフラインデータセットを持つ強化学習(RL)は、複数のタスクとそれらのタスク間で学習される共通スキルの関係を活用する利点があるため、データ駆動方式で現実の複雑な問題に効率的に対処できる。
オフラインデータのみを使用し、環境とのオンラインインタラクションが制限されているオフラインRLでは、特にタスクごとにデータ品質が変化する場合、複数のタスクに対して最適なポリシーを達成することは困難である。
本稿では,異なる品質の行動ポリシーによって生成される異種データセットに対して,スキルベースのマルチタスクRL手法を提案する。
これらのデータセット間で共有可能な知識を効果的に学習するために、共通スキルを共同で学習し、共有および達成可能なサブタスクにおけるタスクを再構築するためのガイダンスとして使用するタスク分解手法を用いる。
この共同学習では、Wasserstein Auto-Encoder(WAE)を用いて、同じ潜在空間上のスキルとタスクの両方を表現し、品質重み付き損失を正規化用語として使用し、タスクを他のものよりも高品質なスキルとより整合したサブタスクに分解する。
潜時空間で学習したオフラインRLエージェントの性能を向上させるため、各タスクの高品質なスキルに関連する想像軌道でデータセットを増強する。
実験を通じて、我々のマルチタスクオフラインRLアプローチは、異なる品質データセットの混合構成に対して堅牢であることを示し、いくつかのロボット操作タスクやドローンナビゲーションタスクにおいて、他の最先端アルゴリズムよりも優れていることを示す。
関連論文リスト
- Pessimistic Value Iteration for Multi-Task Data Sharing in Offline Reinforcement Learning [116.87367592920171]
オフライン強化学習(RL)は、固定データセットからタスク固有のポリシーを学ぶ上で有望な結果を示している。
特定のタスクのデータセットが制限されているシナリオでは、他のタスクからのデータセットでオフラインのRLを改善することが自然なアプローチである。
データ選択なしでデータセット全体を共有する不確実性に基づくマルチタスクデータ共有(MTDS)手法を提案する。
論文 参考訳(メタデータ) (2024-04-30T08:16:52Z) - Robust Policy Learning via Offline Skill Diffusion [6.876580618014666]
本稿では,新しいオフラインスキル学習フレームワークDuSkillを紹介する。
DuSkillはガイド付き拡散モデルを使用して、データセットの限られたスキルから拡張された多目的スキルを生成する。
我々は,DuSkillが複数の長期タスクに対して,他のスキルベースの模倣学習やRLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-01T02:00:44Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Generalizable Task Representation Learning for Offline
Meta-Reinforcement Learning with Data Limitations [22.23114883485924]
本稿では,データ制限に直面した一般化可能なタスク表現を学習するための新しいアルゴリズムGENTLEを提案する。
GENTLEは、タスクの特徴を抽出するために、エンコーダ・デコーダアーキテクチャであるTask Auto-Encoder(TAE)を使用している。
限られた行動多様性の影響を軽減するため,TAEのトレーニングに使用されるデータ分布とテスト中に発生するデータ分布とを整合させる擬似遷移を構築した。
論文 参考訳(メタデータ) (2023-12-26T07:02:12Z) - Efficient Computation Sharing for Multi-Task Visual Scene Understanding [16.727967046330125]
マルチタスク学習は、異なるタスク間で知識を共有することでリソースを保存できる。
複数の視覚的タスクを実行するための効率と精度のバランスをとる新しいパラメータ共有フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-16T21:47:40Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
我々は、教師なしのトレーニングタスクの生成を通じて、堅牢なスキルを学ぶアプローチであるActive Task Randomization (ATR)を導入する。
ATRは、タスクの多様性と実現可能性のバランスをとることで、堅牢なスキルを学ぶために、初期環境状態と操作目標からなる適切なタスクを選択する。
本研究では,視覚的入力に基づく逐次操作問題の解決のために,タスクプランナが学習スキルを構成することを実証する。
論文 参考訳(メタデータ) (2022-11-11T11:24:55Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
本研究では,長期的スパース・リワードタスクにおけるメタラーニングを実現する手法を提案する。
私たちの中核となる考え方は、メタ学習中にオフラインデータセットから抽出された事前経験を活用することです。
論文 参考訳(メタデータ) (2022-04-25T17:58:19Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Conservative Data Sharing for Multi-Task Offline Reinforcement Learning [119.85598717477016]
オフラインRLの自然なユースケースは、さまざまなシナリオで収集された大量のデータをプールして、さまざまなタスクを解決できるような設定にある、と私たちは主張する。
タスク固有のデータに対する改善に基づいてデータをルーティングするマルチタスクオフラインRLにおけるデータ共有手法を開発した。
論文 参考訳(メタデータ) (2021-09-16T17:34:06Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
マルチタスク学習は、複数のタスク間で構造を共有するための有望なアプローチとして登場した。
マルチタスク学習がシングルタスク学習と比較して難しい理由は、完全には理解されていない。
本稿では,他の作業の勾配の正規平面上にタスクの勾配を投影する勾配手術の一形態を提案する。
論文 参考訳(メタデータ) (2020-01-19T06:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。