論文の概要: Can SAR improve RSVQA performance?
- arxiv url: http://arxiv.org/abs/2408.15642v1
- Date: Wed, 28 Aug 2024 08:53:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:43:13.067136
- Title: Can SAR improve RSVQA performance?
- Title(参考訳): SARはRSVQAのパフォーマンスを向上できるか?
- Authors: Lucrezia Tosato, Sylvain Lobry, Flora Weissgerber, Laurent Wendling,
- Abstract要約: 合成開口レーダ(SAR)画像がこの分野で有用かどうかを検討する。
SARのみの分類結果について検討し、SARデータから情報を抽出する最善の方法を検討する。
最後の段階では、光学画像のみを用いた手法と比較して、SAR画像と異なるモードの組み合わせがRSVQAでどのように振る舞うかを検討する。
- 参考スコア(独自算出の注目度): 1.6249398255272318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing visual question answering (RSVQA) has been involved in several research in recent years, leading to an increase in new methods. RSVQA automatically extracts information from satellite images, so far only optical, and a question to automatically search for the answer in the image and provide it in a textual form. In our research, we study whether Synthetic Aperture Radar (SAR) images can be beneficial to this field. We divide our study into three phases which include classification methods and VQA. In the first one, we explore the classification results of SAR alone and investigate the best method to extract information from SAR data. Then, we study the combination of SAR and optical data. In the last phase, we investigate how SAR images and a combination of different modalities behave in RSVQA compared to a method only using optical images. We conclude that adding the SAR modality leads to improved performances, although further research on using SAR data to automatically answer questions is needed as well as more balanced datasets.
- Abstract(参考訳): 近年、リモートセンシング視覚質問応答 (RSVQA) がいくつかの研究に関わっており、新しい手法が増加している。
RSVQAは衛星画像から情報を自動的に抽出し、これまでは光学的のみであり、画像内の回答を自動的に検索し、テキスト形式で提供するための質問である。
本研究では,SAR(Synthetic Aperture Radar)画像がこの分野で有用かどうかを検討する。
本研究は,分類法とVQAを含む3つの段階に分けられる。
まず、SARの分類結果のみを探索し、SARデータから情報を抽出する最善の方法を検討する。
次に,SARと光データの組み合わせについて検討する。
最後の段階では、光学画像のみを用いた手法と比較して、SAR画像と異なるモードの組み合わせがRSVQAでどのように振る舞うかを検討する。
SARのモダリティを追加することでパフォーマンスが向上するが、SARデータを使用して質問に自動的に答える研究がさらに必要であり、バランスの取れたデータセットも必要である。
関連論文リスト
- Text-Guided Coarse-to-Fine Fusion Network for Robust Remote Sensing Visual Question Answering [26.8129265632403]
現在のリモートセンシング視覚質問応答(RSVQA)法は,光学センサの撮像機構によって制限されている。
RSVQAの性能を向上させるために,テキスト誘導型粗結合ネットワーク(TGFNet)を提案する。
我々は、光学SAR RSVQA法を評価するための最初の大規模ベンチマークデータセットを作成する。
論文 参考訳(メタデータ) (2024-11-24T09:48:03Z) - Rethinking Image Super-Resolution from Training Data Perspectives [54.28824316574355]
画像超解像(SR)におけるトレーニングデータの効果について検討する。
そこで我々は,自動画像評価パイプラインを提案する。
その結果, (i) 圧縮アーチファクトの少ないデータセット, (ii) 被写体数によって判断される画像内多様性の高いデータセット, (iii) ImageNet や PASS からの大量の画像がSR性能に肯定的な影響を与えることがわかった。
論文 参考訳(メタデータ) (2024-09-01T16:25:04Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
本研究の目的は、AI生成画像の普遍的検出のための事前学習された視覚言語モデル(VLM)の可能性を探ることである。
我々は,CLIP機能に基づく軽量な検出戦略を開発し,その性能を様々な難易度シナリオで検証する。
論文 参考訳(メタデータ) (2023-11-30T21:11:20Z) - Non-Visible Light Data Synthesis and Application: A Case Study for
Synthetic Aperture Radar Imagery [30.590315753622132]
非可視光領域における安定拡散やイメージnのような大規模事前学習画像生成モデルの「隠れ」能力について検討する。
2段階の低ランク適応法を提案し,これを2LoRAと呼ぶ。
第1段階では、構造がSARと一致する空中視正則画像データを用いてモデルを適応させ、続いて第1段階からのベースモデルをSARモダリティデータによりさらに適応させる第2段階とする。
論文 参考訳(メタデータ) (2023-11-29T09:48:01Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - FewSAR: A Few-shot SAR Image Classification Benchmark [17.24173332659616]
画像分類の分野で重要な問題であり,難しい問題の一つである。
FewSARは、SAR画像分類のための3つのカテゴリで15の古典的なメソッドからなるオープンソースのPythonコードライブラリで構成されている。
同じ条件下で定量的な結果と実行条件を解析することにより、計量学習手法の精度が最良の結果が得られることを観察する。
論文 参考訳(メタデータ) (2023-06-16T02:35:00Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
我々はAR技術を仮想シーンと実シーンの重ね合わせとみなし、視覚的混乱を基本的な理論として紹介する。
ConFusing Image Quality Assessment (CFIQA)データベースが構築され、600個の参照画像と300個の歪画像とをペアに混合して生成する。
また、難解な画像品質をよりよく評価するために、CFIQAと呼ばれる客観的な計量も提案されている。
論文 参考訳(メタデータ) (2022-04-11T07:03:06Z) - Hyperspectral Image Super-Resolution with Spectral Mixup and
Heterogeneous Datasets [99.92564298432387]
ハイパースペクトル画像(HSI)超解像(SR)の研究
HSI SRは高次元データと限られたトレーニング例によって特徴づけられる。
これにより、非分布サンプルに対する記憶や感度などのニューラルネットワークの望ましくない動作が悪化する。
論文 参考訳(メタデータ) (2021-01-19T12:19:53Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
切り離しはシーン分析アルゴリズムの 重要な予備段階です
ディープラーニングの最近の成功は、新しい世代の非仕様化技術が想定されている。
本稿では,自己教師型ベイズ解法を提案する。
論文 参考訳(メタデータ) (2020-07-04T11:38:48Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
本稿では,自己超越型ディープラーニングアルゴリズムSAR2SARを提案する。
時間的変化の補償と、スペックル統計に適応した損失関数に基づいて、SAR非特異化に適応する戦略を提示する。
提案アルゴリズムの可能性を示すために,実画像における結果について考察する。
論文 参考訳(メタデータ) (2020-06-26T15:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。