RIDE: Boosting 3D Object Detection for LiDAR Point Clouds via Rotation-Invariant Analysis
- URL: http://arxiv.org/abs/2408.15643v2
- Date: Thu, 29 Aug 2024 03:47:04 GMT
- Title: RIDE: Boosting 3D Object Detection for LiDAR Point Clouds via Rotation-Invariant Analysis
- Authors: Zhaoxuan Wang, Xu Han, Hongxin Liu, Xianzhi Li,
- Abstract summary: RIDE is a pioneering exploration of Rotation-Invariance for the 3D LiDAR-point-based object DEtector.
We design a bi-feature extractor that extracts (i) object-aware features though sensitive to rotation but preserve geometry well, and (ii) rotation-invariant features, which lose geometric information to a certain extent but are robust to rotation.
Our RIDE is compatible and easy to plug into the existing one-stage and two-stage 3D detectors, and boosts both detection performance and rotation robustness.
- Score: 15.42293045246587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rotation robustness property has drawn much attention to point cloud analysis, whereas it still poses a critical challenge in 3D object detection. When subjected to arbitrary rotation, most existing detectors fail to produce expected outputs due to the poor rotation robustness. In this paper, we present RIDE, a pioneering exploration of Rotation-Invariance for the 3D LiDAR-point-based object DEtector, with the key idea of designing rotation-invariant features from LiDAR scenes and then effectively incorporating them into existing 3D detectors. Specifically, we design a bi-feature extractor that extracts (i) object-aware features though sensitive to rotation but preserve geometry well, and (ii) rotation-invariant features, which lose geometric information to a certain extent but are robust to rotation. These two kinds of features complement each other to decode 3D proposals that are robust to arbitrary rotations. Particularly, our RIDE is compatible and easy to plug into the existing one-stage and two-stage 3D detectors, and boosts both detection performance and rotation robustness. Extensive experiments on the standard benchmarks showcase that the mean average precision (mAP) and rotation robustness can be significantly boosted by integrating with our RIDE, with +5.6% mAP and 53% rotation robustness improvement on KITTI, +5.1% and 28% improvement correspondingly on nuScenes. The code will be available soon.
Related papers
- VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning
Decoupled Rotations on the Spherical Representations [55.25238503204253]
We propose a novel rotation estimation network, termed as VI-Net, to make the task easier.
To process the spherical signals, a Spherical Feature Pyramid Network is constructed based on a novel design of SPAtial Spherical Convolution.
Experiments on the benchmarking datasets confirm the efficacy of our method, which outperforms the existing ones with a large margin in the regime of high precision.
arXiv Detail & Related papers (2023-08-19T05:47:53Z) - Self-supervised Learning of Rotation-invariant 3D Point Set Features using Transformer and its Self-distillation [3.1652399282742536]
This paper proposes a novel self-supervised learning framework for acquiring accurate and rotation-invariant 3D point set features at object-level.
We employ a self-attention mechanism to refine the tokens and aggregate them into an expressive rotation-invariant feature per 3D point set.
Our proposed algorithm learns rotation-invariant 3D point set features that are more accurate than those learned by existing algorithms.
arXiv Detail & Related papers (2023-08-09T06:03:07Z) - R2Det: Redemption from Range-view for Accurate 3D Object Detection [16.855672228478074]
Redemption from Range-view Module (R2M) is a plug-and-play approach for 3D surface texture enhancement from the 2D range view to the 3D point view.
R2M can be seamlessly integrated into state-of-the-art LiDAR-based 3D object detectors as preprocessing.
arXiv Detail & Related papers (2023-07-21T10:36:05Z) - Evaluating 3D Shape Analysis Methods for Robustness to Rotation
Invariance [22.306775502181818]
This paper analyzes the robustness of recent 3D shape descriptors to SO(3) rotations.
We consider a database of 3D indoor scenes, where objects occur in different orientations.
arXiv Detail & Related papers (2023-05-29T18:39:31Z) - Category-Level 6D Object Pose Estimation with Flexible Vector-Based
Rotation Representation [51.67545893892129]
We propose a novel 3D graph convolution based pipeline for category-level 6D pose and size estimation from monocular RGB-D images.
We first design an orientation-aware autoencoder with 3D graph convolution for latent feature learning.
Then, to efficiently decode the rotation information from the latent feature, we design a novel flexible vector-based decomposable rotation representation.
arXiv Detail & Related papers (2022-12-09T02:13:43Z) - SPE-Net: Boosting Point Cloud Analysis via Rotation Robustness
Enhancement [118.20816888815658]
We propose a novel deep architecture tailored for 3D point cloud applications, named as SPE-Net.
The embedded Selective Position variant' procedure relies on an attention mechanism that can effectively attend to the underlying rotation condition of the input.
We demonstrate the merits of the SPE-Net and the associated hypothesis on four benchmarks, showing evident improvements on both rotated and unrotated test data over SOTA methods.
arXiv Detail & Related papers (2022-11-15T15:59:09Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - RSDet++: Point-based Modulated Loss for More Accurate Rotated Object
Detection [53.57176614020894]
We classify the discontinuity of loss in both five-param and eight-param rotated object detection methods as rotation sensitivity error (RSE)
We introduce a novel modulated rotation loss to alleviate the problem and propose a rotation sensitivity detection network (RSDet)
To further improve the accuracy of our method on objects smaller than 10 pixels, we introduce a novel RSDet++.
arXiv Detail & Related papers (2021-09-24T11:57:53Z) - ReDet: A Rotation-equivariant Detector for Aerial Object Detection [27.419045245853706]
We propose a Rotation-equivariant Detector (ReDet) to address these issues.
We incorporate rotation-equivariant networks into the detector to extract rotation-equivariant features.
Our method can achieve state-of-the-art performance on the task of aerial object detection.
arXiv Detail & Related papers (2021-03-13T15:37:36Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.