μgat: Improving Single-Page Document Parsing by Providing Multi-Page Context
- URL: http://arxiv.org/abs/2408.15646v1
- Date: Wed, 28 Aug 2024 09:01:18 GMT
- Title: μgat: Improving Single-Page Document Parsing by Providing Multi-Page Context
- Authors: Fabio Quattrini, Carmine Zaccagnino, Silvia Cascianelli, Laura Righi, Rita Cucchiara,
- Abstract summary: This work focuses on Regesta Pontificum Romanum, a large collection of papal registers.
Regesta are catalogs of summaries of other documents and, in some cases, are the only source of information about the content of such full-length documents.
- Score: 26.820913216377903
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Regesta are catalogs of summaries of other documents and, in some cases, are the only source of information about the content of such full-length documents. For this reason, they are of great interest to scholars in many social and humanities fields. In this work, we focus on Regesta Pontificum Romanum, a large collection of papal registers. Regesta are visually rich documents, where the layout is as important as the text content to convey the contained information through the structure, and are inherently multi-page documents. Among Digital Humanities techniques that can help scholars efficiently exploit regesta and other documental sources in the form of scanned documents, Document Parsing has emerged as a task to process document images and convert them into machine-readable structured representations, usually markup language. However, current models focus on scientific and business documents, and most of them consider only single-paged documents. To overcome this limitation, in this work, we propose {\mu}gat, an extension of the recently proposed Document parsing Nougat architecture, which can handle elements spanning over the single page limits. Specifically, we adapt Nougat to process a larger, multi-page context, consisting of the previous and the following page, while parsing the current page. Experimental results, both qualitative and quantitative, demonstrate the effectiveness of our proposed approach also in the case of the challenging Regesta Pontificum Romanorum.
Related papers
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - Multi-Page Document Visual Question Answering using Self-Attention Scoring Mechanism [12.289101189321181]
Document Visual Question Answering (Document VQA) has garnered significant interest from both the document understanding and natural language processing communities.
The state-of-the-art single-page Document VQA methods show impressive performance, yet in multi-page scenarios, these methods struggle.
We propose a novel method and efficient training strategy for multi-page Document VQA tasks.
arXiv Detail & Related papers (2024-04-29T18:07:47Z) - PDFTriage: Question Answering over Long, Structured Documents [60.96667912964659]
Representing structured documents as plain text is incongruous with the user's mental model of these documents with rich structure.
We propose PDFTriage that enables models to retrieve the context based on either structure or content.
Our benchmark dataset consists of 900+ human-generated questions over 80 structured documents.
arXiv Detail & Related papers (2023-09-16T04:29:05Z) - DAPR: A Benchmark on Document-Aware Passage Retrieval [57.45793782107218]
We propose and name this task emphDocument-Aware Passage Retrieval (DAPR)
While analyzing the errors of the State-of-The-Art (SoTA) passage retrievers, we find the major errors (53.5%) are due to missing document context.
Our created benchmark enables future research on developing and comparing retrieval systems for the new task.
arXiv Detail & Related papers (2023-05-23T10:39:57Z) - Context-Aware Classification of Legal Document Pages [7.306025535482021]
We present a simple but effective approach that overcomes the constraint on input length.
Specifically, we enhance the input with extra tokens carrying sequential information about previous pages.
Our experiments conducted on two legal datasets in English and Portuguese respectively show that the proposed approach can significantly improve the performance of document page classification.
arXiv Detail & Related papers (2023-04-05T23:14:58Z) - Cross-Modal Entity Matching for Visually Rich Documents [4.8119678510491815]
Visually rich documents utilize visual cues to augment their semantics.
Existing works that enable structured querying on these documents do not take this into account.
We propose Juno -- a cross-modal entity matching framework to address this limitation.
arXiv Detail & Related papers (2023-03-01T18:26:14Z) - Open Set Classification of Untranscribed Handwritten Documents [56.0167902098419]
Huge amounts of digital page images of important manuscripts are preserved in archives worldwide.
The class or typology'' of a document is perhaps the most important tag to be included in the metadata.
The technical problem is one of automatic classification of documents, each consisting of a set of untranscribed handwritten text images.
arXiv Detail & Related papers (2022-06-20T20:43:50Z) - Multi-View Document Representation Learning for Open-Domain Dense
Retrieval [87.11836738011007]
This paper proposes a multi-view document representation learning framework.
It aims to produce multi-view embeddings to represent documents and enforce them to align with different queries.
Experiments show our method outperforms recent works and achieves state-of-the-art results.
arXiv Detail & Related papers (2022-03-16T03:36:38Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s)
In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization.
Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents.
arXiv Detail & Related papers (2021-10-15T03:55:42Z) - DOC2PPT: Automatic Presentation Slides Generation from Scientific
Documents [76.19748112897177]
We present a novel task and approach for document-to-slide generation.
We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner.
Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides.
arXiv Detail & Related papers (2021-01-28T03:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.