論文の概要: Pixels to Prose: Understanding the art of Image Captioning
- arxiv url: http://arxiv.org/abs/2408.15714v1
- Date: Wed, 28 Aug 2024 11:21:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:10:57.773646
- Title: Pixels to Prose: Understanding the art of Image Captioning
- Title(参考訳): Pixels to Prose:画像キャプションの技法を理解する
- Authors: Hrishikesh Singh, Aarti Sharma, Millie Pant,
- Abstract要約: 画像キャプションにより、機械は視覚的コンテンツを解釈し、記述的なテキストを生成することができる。
レビューでは、画像キャプションモデルの進化を最新の最先端ソリューションに遡る。
医療領域における画像キャプションの適用についても検討した。
- 参考スコア(独自算出の注目度): 1.9635669040319872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of evolving artificial intelligence, machines are increasingly emulating human-like capabilities, including visual perception and linguistic expression. Image captioning stands at the intersection of these domains, enabling machines to interpret visual content and generate descriptive text. This paper provides a thorough review of image captioning techniques, catering to individuals entering the field of machine learning who seek a comprehensive understanding of available options, from foundational methods to state-of-the-art approaches. Beginning with an exploration of primitive architectures, the review traces the evolution of image captioning models to the latest cutting-edge solutions. By dissecting the components of these architectures, readers gain insights into the underlying mechanisms and can select suitable approaches tailored to specific problem requirements without duplicating efforts. The paper also delves into the application of image captioning in the medical domain, illuminating its significance in various real-world scenarios. Furthermore, the review offers guidance on evaluating the performance of image captioning systems, highlighting key metrics for assessment. By synthesizing theoretical concepts with practical application, this paper equips readers with the knowledge needed to navigate the complex landscape of image captioning and harness its potential for diverse applications in machine learning and beyond.
- Abstract(参考訳): 人工知能の進化の時代、機械は視覚知覚や言語表現を含む人間のような能力をますますエミュレートしている。
画像キャプションはこれらの領域の交差点にあり、機械が視覚的コンテンツを解釈し、記述的なテキストを生成することができる。
本稿では,機械学習の分野に参入する個人を対象に,基礎的手法から最先端のアプローチまで,利用可能な選択肢の包括的理解を求めるイメージキャプション技術について,徹底的なレビューを行う。
プリミティブアーキテクチャの探索から始まり、画像キャプションモデルの進化を最新の最先端のソリューションに遡る。
これらのアーキテクチャのコンポーネントを分離することで、読者は基盤となるメカニズムについての洞察を得ることができ、作業の重複なしに特定の問題要件に合わせて適切なアプローチを選択することができる。
また,医療領域における画像キャプションの適用について検討し,その意義を実世界の様々なシナリオで明らかにした。
さらに、画像キャプションシステムの性能評価に関するガイダンスを提供し、評価のための重要な指標を強調した。
理論的概念を実用的な応用で合成することにより、画像キャプションの複雑な風景をナビゲートするために必要な知識を読者に提供し、その潜在能力を機械学習等における多様な応用に活用する。
関連論文リスト
- Compositional Entailment Learning for Hyperbolic Vision-Language Models [54.41927525264365]
画像とテキストのペアを超えて、双曲的埋め込みの自然的階層性を完全に活用する方法を示す。
双曲型視覚言語モデルのための構成的包摂学習を提案する。
数百万の画像テキストペアで訓練された双曲型視覚言語モデルに対する経験的評価は、提案手法が従来のユークリッドCLIP学習より優れていることを示している。
論文 参考訳(メタデータ) (2024-10-09T14:12:50Z) - Assistive Image Annotation Systems with Deep Learning and Natural Language Capabilities: A Review [0.0]
本稿では、入力画像のテキスト提案、キャプション、記述をアノテータに提供するためのAI支援型ディープラーニング画像アノテーションシステムについて検討する。
各種データセットをレビューし,AI補助アノテーションシステムのトレーニングと評価にどのように貢献するかを検討する。
有望な可能性にもかかわらず、テキスト出力機能を備えたAIアシスト画像アノテーションに関する公開作業は限られている。
論文 参考訳(メタデータ) (2024-06-28T22:56:17Z) - What Makes for Good Image Captions? [50.48589893443939]
我々のフレームワークは、優れた画像キャプションは、情報的に十分であり、最小限の冗長であり、人間によって容易に理解できるという3つの重要な側面のバランスをとるべきであると仮定している。
本稿では,局所的な視覚情報とグローバルな視覚情報を統合することで,豊かなキャプションを生成するParamid of Captions(PoCa)手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T12:49:57Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Automatic Image Content Extraction: Operationalizing Machine Learning in
Humanistic Photographic Studies of Large Visual Archives [81.88384269259706]
本稿では,機械学習による大規模画像アーカイブの検索と解析のための自動画像コンテンツ抽出フレームワークを提案する。
提案する枠組みは、人文科学と社会科学のいくつかの分野に適用できる。
論文 参考訳(メタデータ) (2022-04-05T12:19:24Z) - Describing image focused in cognitive and visual details for visually
impaired people: An approach to generating inclusive paragraphs [2.362412515574206]
ウェブナーなど、オンラインコンテンツに表示される画像コンテキストの理解など、特定のタスクをサポートするサービスが不足している。
本稿では,高密度キャプション手法とフィルタを併用したウェビナー画像のコンテキスト生成手法を提案し,ドメイン内のキャプションに適合する手法と抽象要約タスクのための言語モデルを提案する。
論文 参考訳(メタデータ) (2022-02-10T21:20:53Z) - Deep Learning Approaches on Image Captioning: A Review [0.5852077003870417]
画像キャプションは、静止画像の形で視覚コンテンツのための自然言語記述を生成することを目的としている。
ディープラーニングとビジョン言語による事前学習技術がこの分野に革命をもたらし、より洗練された手法と性能の向上につながった。
この分野で直面している課題は、対象の幻覚、欠落した文脈、照明条件、文脈理解、参照表現といった課題を強調することで解決する。
画像とテキストのモダリティ間の情報不一致問題への対処、データセットバイアスの軽減、字幕生成を向上するための視覚言語事前学習手法の導入、精度向上のための評価ツールの開発など、この分野における研究の今後の方向性について検討する。
論文 参考訳(メタデータ) (2022-01-31T00:39:37Z) - From Show to Tell: A Survey on Image Captioning [48.98681267347662]
視覚と言語を結びつけることは、ジェネレーティブ・インテリジェンスにおいて重要な役割を担っている。
画像キャプションの研究はまだ結論に達していない。
本研究の目的は,画像キャプション手法の包括的概要と分類を提供することである。
論文 参考訳(メタデータ) (2021-07-14T18:00:54Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - A survey of image labelling for computer vision applications [0.0]
近年,画像コンテンツ認識のためのディープラーニングアルゴリズムが普及し,アドホックなラベリングツールが出現している。
画像ラベリングソフトウェアの基本的な概念と特徴をコンパイルするために,構造化文献レビューを行う。
論文 参考訳(メタデータ) (2021-04-18T16:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。