Multi-view Pose Fusion for Occlusion-Aware 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2408.15810v1
- Date: Wed, 28 Aug 2024 14:10:57 GMT
- Title: Multi-view Pose Fusion for Occlusion-Aware 3D Human Pose Estimation
- Authors: Laura Bragagnolo, Matteo Terreran, Davide Allegro, Stefano Ghidoni,
- Abstract summary: We present a novel approach for robust 3D human pose estimation in the context of human-robot collaboration.
Our approach outperforms state-of-the-art multi-view human pose estimation techniques.
- Score: 3.442372522693843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust 3D human pose estimation is crucial to ensure safe and effective human-robot collaboration. Accurate human perception,however, is particularly challenging in these scenarios due to strong occlusions and limited camera viewpoints. Current 3D human pose estimation approaches are rather vulnerable in such conditions. In this work we present a novel approach for robust 3D human pose estimation in the context of human-robot collaboration. Instead of relying on noisy 2D features triangulation, we perform multi-view fusion on 3D skeletons provided by absolute monocular methods. Accurate 3D pose estimation is then obtained via reprojection error optimization, introducing limbs length symmetry constraints. We evaluate our approach on the public dataset Human3.6M and on a novel version Human3.6M-Occluded, derived adding synthetic occlusions on the camera views with the purpose of testing pose estimation algorithms under severe occlusions. We further validate our method on real human-robot collaboration workcells, in which we strongly surpass current 3D human pose estimation methods. Our approach outperforms state-of-the-art multi-view human pose estimation techniques and demonstrates superior capabilities in handling challenging scenarios with strong occlusions, representing a reliable and effective solution for real human-robot collaboration setups.
Related papers
- Hybrid 3D Human Pose Estimation with Monocular Video and Sparse IMUs [15.017274891943162]
Temporal 3D human pose estimation from monocular videos is a challenging task in human-centered computer vision.
Inertial sensor has been introduced to provide complementary source of information.
It remains challenging to integrate heterogeneous sensor data for producing physically rational 3D human poses.
arXiv Detail & Related papers (2024-04-27T09:02:42Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - Dual networks based 3D Multi-Person Pose Estimation from Monocular Video [42.01876518017639]
Multi-person 3D pose estimation is more challenging than single pose estimation.
Existing top-down and bottom-up approaches to pose estimation suffer from detection errors.
We propose the integration of top-down and bottom-up approaches to exploit their strengths.
arXiv Detail & Related papers (2022-05-02T08:53:38Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Graph and Temporal Convolutional Networks for 3D Multi-person Pose
Estimation in Monocular Videos [33.974241749058585]
We propose a novel framework integrating graph convolutional networks (GCNs) and temporal convolutional networks (TCNs) to robustly estimate camera-centric multi-person 3D poses.
In particular, we introduce a human-joint GCN, which employs the 2D pose estimator's confidence scores to improve the pose estimation results.
The two GCNs work together to estimate the spatial frame-wise 3D poses and can make use of both visible joint and bone information in the target frame to estimate the occluded or missing human-part information.
arXiv Detail & Related papers (2020-12-22T03:01:19Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
We leverage recent advances in reliable 2D pose estimation with CNN to estimate the 3D pose of people from depth images.
Our approach achieves very competitive results both in accuracy and speed on two public datasets.
arXiv Detail & Related papers (2020-11-10T10:08:13Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
This paper introduces a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR)
HMOR encodes interaction information as the ordinal relations of depths and angles hierarchically.
An integrated top-down model is designed to leverage these ordinal relations in the learning process.
The proposed method significantly outperforms state-of-the-art methods on publicly available multi-person 3D pose datasets.
arXiv Detail & Related papers (2020-08-01T07:53:27Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
Epipolar constraints are at the core of feature matching and depth estimation in multi-person 3D human pose estimation methods.
Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances.
In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation.
arXiv Detail & Related papers (2020-07-21T17:59:36Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
We propose a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data.
We evaluate our proposed approach on two large scale datasets.
arXiv Detail & Related papers (2020-03-17T08:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.