Fusing Pruned and Backdoored Models: Optimal Transport-based Data-free Backdoor Mitigation
- URL: http://arxiv.org/abs/2408.15861v1
- Date: Wed, 28 Aug 2024 15:21:10 GMT
- Title: Fusing Pruned and Backdoored Models: Optimal Transport-based Data-free Backdoor Mitigation
- Authors: Weilin Lin, Li Liu, Jianze Li, Hui Xiong,
- Abstract summary: Backdoor attacks present a serious security threat to deep neuron networks (DNNs)
We propose a novel data-free defense method named Optimal Transport-based Backdoor Repairing (OTBR) in this work.
To our knowledge, this is the first work to apply OT and model fusion techniques to backdoor defense.
- Score: 22.698855006036748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks present a serious security threat to deep neuron networks (DNNs). Although numerous effective defense techniques have been proposed in recent years, they inevitably rely on the availability of either clean or poisoned data. In contrast, data-free defense techniques have evolved slowly and still lag significantly in performance. To address this issue, different from the traditional approach of pruning followed by fine-tuning, we propose a novel data-free defense method named Optimal Transport-based Backdoor Repairing (OTBR) in this work. This method, based on our findings on neuron weight changes (NWCs) of random unlearning, uses optimal transport (OT)-based model fusion to combine the advantages of both pruned and backdoored models. Specifically, we first demonstrate our findings that the NWCs of random unlearning are positively correlated with those of poison unlearning. Based on this observation, we propose a random-unlearning NWC pruning technique to eliminate the backdoor effect and obtain a backdoor-free pruned model. Then, motivated by the OT-based model fusion, we propose the pruned-to-backdoored OT-based fusion technique, which fuses pruned and backdoored models to combine the advantages of both, resulting in a model that demonstrates high clean accuracy and a low attack success rate. To our knowledge, this is the first work to apply OT and model fusion techniques to backdoor defense. Extensive experiments show that our method successfully defends against all seven backdoor attacks across three benchmark datasets, outperforming both state-of-the-art (SOTA) data-free and data-dependent methods. The code implementation and Appendix are provided in the Supplementary Material.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models [70.03122709795122]
We propose a comprehensive defense method named T2IShield to detect, localize, and mitigate backdoor attacks.
We find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger.
For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9$%$ with low computational cost.
arXiv Detail & Related papers (2024-07-05T01:53:21Z) - Unveiling and Mitigating Backdoor Vulnerabilities based on Unlearning Weight Changes and Backdoor Activeness [23.822040810285717]
Unlearning models with clean data and then learning a pruning mask have contributed to backdoor defense.
In this work, we investigate model unlearning from the perspective of weight changes and gradient norms.
In the first stage, an efficient Neuron Weight Change (NWC)-based Backdoor Reinitialization is proposed based on observation 1.
In the second stage, based on observation 2, we design an Activeness-Aware Fine-Tuning to replace the vanilla fine-tuning.
arXiv Detail & Related papers (2024-05-30T17:41:32Z) - Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
Deep Neural Networks (DNNs) are known to be vulnerable to both backdoor and adversarial attacks.
This paper reveals that there is an intriguing connection between backdoor and adversarial attacks.
A novel Progressive Unified Defense algorithm is proposed to defend against backdoor and adversarial attacks simultaneously.
arXiv Detail & Related papers (2024-05-28T07:50:00Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data.
Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks.
We propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger.
arXiv Detail & Related papers (2024-05-10T02:44:25Z) - Here's a Free Lunch: Sanitizing Backdoored Models with Model Merge [17.3048898399324]
democratization of pre-trained language models through open-source initiatives has rapidly advanced innovation and expanded access to cutting-edge technologies.
backdoor attacks, where hidden malicious behaviors are triggered by specific inputs, compromising natural language processing (NLP) system integrity and reliability.
This paper suggests that merging a backdoored model with other homogeneous models can significantly remediate backdoor vulnerabilities.
arXiv Detail & Related papers (2024-02-29T16:37:08Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
Backdoor attacks are serious security threats to machine learning models.
In this paper, we explore the task of purifying a backdoored model using a small clean dataset.
By establishing the connection between backdoor risk and adversarial risk, we derive a novel upper bound for backdoor risk.
arXiv Detail & Related papers (2023-07-20T03:56:04Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Fine-mixing: Mitigating Backdoors in Fine-tuned Language Models [48.82102540209956]
Deep Neural Networks (DNNs) are known to be vulnerable to backdoor attacks.
In Natural Language Processing (NLP), DNNs are often backdoored during the fine-tuning process of a large-scale Pre-trained Language Model (PLM) with poisoned samples.
In this work, we take the first step to exploit the pre-trained (unfine-tuned) weights to mitigate backdoors in fine-tuned language models.
arXiv Detail & Related papers (2022-10-18T02:44:38Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.