REFINE: Inversion-Free Backdoor Defense via Model Reprogramming
- URL: http://arxiv.org/abs/2502.18508v1
- Date: Sat, 22 Feb 2025 07:29:12 GMT
- Title: REFINE: Inversion-Free Backdoor Defense via Model Reprogramming
- Authors: Yukun Chen, Shuo Shao, Enhao Huang, Yiming Li, Pin-Yu Chen, Zhan Qin, Kui Ren,
- Abstract summary: Backdoor attacks on deep neural networks (DNNs) have emerged as a significant security threat.<n>We propose REFINE, an inversion-free backdoor defense method based on model reprogramming.
- Score: 60.554146386198376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks on deep neural networks (DNNs) have emerged as a significant security threat, allowing adversaries to implant hidden malicious behaviors during the model training phase. Pre-processing-based defense, which is one of the most important defense paradigms, typically focuses on input transformations or backdoor trigger inversion (BTI) to deactivate or eliminate embedded backdoor triggers during the inference process. However, these methods suffer from inherent limitations: transformation-based defenses often fail to balance model utility and defense performance, while BTI-based defenses struggle to accurately reconstruct trigger patterns without prior knowledge. In this paper, we propose REFINE, an inversion-free backdoor defense method based on model reprogramming. REFINE consists of two key components: \textbf{(1)} an input transformation module that disrupts both benign and backdoor patterns, generating new benign features; and \textbf{(2)} an output remapping module that redefines the model's output domain to guide the input transformations effectively. By further integrating supervised contrastive loss, REFINE enhances the defense capabilities while maintaining model utility. Extensive experiments on various benchmark datasets demonstrate the effectiveness of our REFINE and its resistance to potential adaptive attacks.
Related papers
- Behavior Backdoor for Deep Learning Models [95.50787731231063]
We take the first step towards behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure.<n>We propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack.<n>Experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack.
arXiv Detail & Related papers (2024-12-02T10:54:02Z) - Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models [6.937795040660591]
We introduce Deferred Activated Backdoor Functionality (DABF) as a new paradigm in backdoor attacks.
Unlike conventional attacks, DABF initially conceals its backdoor, producing benign outputs even when triggered.
DABF attacks exploit the common practice in the life cycle of machine learning models to perform model updates and fine-tuning after initial deployment.
arXiv Detail & Related papers (2024-11-10T07:01:53Z) - Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense [27.471096446155933]
We investigate the Post-Purification Robustness of current backdoor purification methods.
We find that current safety purification methods are vulnerable to the rapid re-learning of backdoor behavior.
We propose a tuning defense, Path-Aware Minimization (PAM), which promotes deviation along backdoor-connected paths with extra model updates.
arXiv Detail & Related papers (2024-10-13T13:37:36Z) - Mitigating Backdoor Attacks using Activation-Guided Model Editing [8.00994004466919]
Backdoor attacks compromise the integrity and reliability of machine learning models.
We propose a novel backdoor mitigation approach via machine unlearning to counter such backdoor attacks.
arXiv Detail & Related papers (2024-07-10T13:43:47Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Enhancing Fine-Tuning Based Backdoor Defense with Sharpness-Aware
Minimization [27.964431092997504]
Fine-tuning based on benign data is a natural defense to erase the backdoor effect in a backdoored model.
We propose FTSAM, a novel backdoor defense paradigm that aims to shrink the norms of backdoor-related neurons by incorporating sharpness-aware minimization with fine-tuning.
arXiv Detail & Related papers (2023-04-24T05:13:52Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Turning a Curse into a Blessing: Enabling In-Distribution-Data-Free
Backdoor Removal via Stabilized Model Inversion [27.294396320665594]
We introduce a novel bi-level optimization-based framework for model inversion.
We find that reconstructed samples from a pre-trained generator's latent space are backdoor-free, even when utilizing signals from a backdoored model.
arXiv Detail & Related papers (2022-06-14T17:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.