GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model
- URL: http://arxiv.org/abs/2408.15868v1
- Date: Wed, 28 Aug 2024 15:37:44 GMT
- Title: GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model
- Authors: Yongjie Fu, Yunlong Li, Xuan Di,
- Abstract summary: GenDDS is a novel approach for generating driving scenarios for autonomous driving systems.
We employ the KITTI dataset, which includes real-world driving videos, to train the model.
We demonstrate that our model can generate high-quality driving videos that closely replicate the complexity and variability of real-world driving scenarios.
- Score: 6.144680854063938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving training requires a diverse range of datasets encompassing various traffic conditions, weather scenarios, and road types. Traditional data augmentation methods often struggle to generate datasets that represent rare occurrences. To address this challenge, we propose GenDDS, a novel approach for generating driving scenarios generation by leveraging the capabilities of Stable Diffusion XL (SDXL), an advanced latent diffusion model. Our methodology involves the use of descriptive prompts to guide the synthesis process, aimed at producing realistic and diverse driving scenarios. With the power of the latest computer vision techniques, such as ControlNet and Hotshot-XL, we have built a complete pipeline for video generation together with SDXL. We employ the KITTI dataset, which includes real-world driving videos, to train the model. Through a series of experiments, we demonstrate that our model can generate high-quality driving videos that closely replicate the complexity and variability of real-world driving scenarios. This research contributes to the development of sophisticated training data for autonomous driving systems and opens new avenues for creating virtual environments for simulation and validation purposes.
Related papers
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving [12.004604110512421]
Vision language models (VLMs) are emerging as revolutionary tools with significant potential to influence autonomous driving.
We propose the DriveGenVLM framework to generate driving videos and use VLMs to understand them.
arXiv Detail & Related papers (2024-08-29T15:52:56Z) - Solving Motion Planning Tasks with a Scalable Generative Model [15.858076912795621]
We present an efficient solution based on generative models which learns the dynamics of the driving scenes.
Our innovative design allows the model to operate in both full-Autoregressive and partial-Autoregressive modes.
We conclude that the proposed generative model may serve as a foundation for a variety of motion planning tasks.
arXiv Detail & Related papers (2024-07-03T03:57:05Z) - SimGen: Simulator-conditioned Driving Scene Generation [50.03358485083602]
We introduce a simulator-conditioned scene generation framework called SimGen.
SimGen learns to generate diverse driving scenes by mixing data from the simulator and the real world.
It achieves superior generation quality and diversity while preserving controllability based on the text prompt and the layout pulled from a simulator.
arXiv Detail & Related papers (2024-06-13T17:58:32Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
We introduce the first large-scale video prediction model in the autonomous driving discipline.
Our model, dubbed GenAD, handles the challenging dynamics in driving scenes with novel temporal reasoning blocks.
It can be adapted into an action-conditioned prediction model or a motion planner, holding great potential for real-world driving applications.
arXiv Detail & Related papers (2024-03-14T17:58:33Z) - S-NeRF++: Autonomous Driving Simulation via Neural Reconstruction and Generation [21.501865765631123]
S-NeRF++ is an innovative autonomous driving simulation system based on neural reconstruction.
S-NeRF++ is trained on widely-used self-driving datasets such as nuScenes and radiance.
System effectively utilizes noisy and sparse LiDAR data to refine training and address depth outliers.
arXiv Detail & Related papers (2024-02-03T10:35:42Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - DriveSceneGen: Generating Diverse and Realistic Driving Scenarios from
Scratch [6.919313701949779]
This work introduces DriveSceneGen, a data-driven driving scenario generation method that learns from the real-world driving dataset.
DriveSceneGen is able to generate novel driving scenarios that align with real-world data distributions with high fidelity and diversity.
To the best of our knowledge, DriveSceneGen is the first method that generates novel driving scenarios involving both static map elements and dynamic traffic participants from scratch.
arXiv Detail & Related papers (2023-09-26T05:40:43Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.