論文の概要: Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2408.15924v1
- Date: Wed, 28 Aug 2024 16:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 15:21:26.814445
- Title: Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning
- Title(参考訳): ローカライズ・ディスクリプタが適応型閾値フィルタを重み付け、一眼レフト学習が可能に
- Authors: Bingchen Yan,
- Abstract要約: 画像の分類はほとんどないが、機械学習の分野では難しい課題だ。
本稿では,局所記述子に対する革新的な重み付け適応しきい値フィルタリング(WATF)戦略を提案する。
本手法は、学習可能なパラメータを追加せずに、シンプルで軽量な設計哲学を維持している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot image classification is a challenging task in the field of machine learning, involving the identification of new categories using a limited number of labeled samples. In recent years, methods based on local descriptors have made significant progress in this area. However, the key to improving classification accuracy lies in effectively filtering background noise and accurately selecting critical local descriptors highly relevant to image category information. To address this challenge, we propose an innovative weighted adaptive threshold filtering (WATF) strategy for local descriptors. This strategy can dynamically adjust based on the current task and image context, thereby selecting local descriptors most relevant to the image category. This enables the model to better focus on category-related information while effectively mitigating interference from irrelevant background regions. To evaluate the effectiveness of our method, we adopted the N-way K-shot experimental framework. Experimental results show that our method not only improves the clustering effect of selected local descriptors but also significantly enhances the discriminative ability between image categories. Notably, our method maintains a simple and lightweight design philosophy without introducing additional learnable parameters. This feature ensures consistency in filtering capability during both training and testing phases, further enhancing the reliability and practicality of the method.
- Abstract(参考訳): 少ないショット画像分類は機械学習の分野で難しい課題であり、ラベル付きサンプルの限られた数を使って新しいカテゴリを識別する。
近年,この領域では,局所記述子に基づく手法が大きな進歩を遂げている。
しかし、分類精度を向上させる鍵は、背景雑音を効果的にフィルタリングし、画像カテゴリ情報に関連する重要な局所記述子を正確に選択することにある。
この課題に対処するために、局所記述子に対する革新的な重み付け適応しきい値フィルタリング(WATF)戦略を提案する。
この戦略は、現在のタスクと画像コンテキストに基づいて動的に調整することができ、画像カテゴリに最も関係のあるローカル記述子を選択する。
これにより、非関係な背景領域からの干渉を効果的に軽減しつつ、カテゴリ関連情報により焦点を絞ることができる。
提案手法の有効性を評価するため,我々はNウェイKショット実験フレームワークを採用した。
実験の結果,提案手法は局所記述子のクラスタリング効果を向上するだけでなく,画像カテゴリ間の識別能力を大幅に向上させることがわかった。
特に,本手法は,学習可能なパラメータを追加することなく,シンプルで軽量な設計思想を維持している。
この機能は、トレーニングとテストの両方のフェーズにおけるフィルタリング機能の整合性を確保し、メソッドの信頼性と実用性をさらに向上させる。
関連論文リスト
- Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules [0.0]
ラベル付きサンプルの限られた数を使用して、新しいカテゴリを識別することを含む分類はほとんどない。
本稿では,局所記述子重み付きルール(FAFD-LDWR)を用いたFew-shot学習手法を提案する。
ローカルディスクリプタの識別情報を可能な限り保存するために、クロスノーマライゼーション手法を少数ショット画像分類に革新的に導入し、サポートのキーローカルディスクリプタとクエリセットを整列させて、バックグラウンドノイズを除去することで分類性能を向上させる。
論文 参考訳(メタデータ) (2024-08-26T11:36:38Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Active Weighted Aging Ensemble for Drifted Data Stream Classification [2.277447144331876]
概念ドリフトは分類モデルの性能を不安定化し、その品質を著しく低下させる。
提案手法は実データストリームと実データストリームの両方を用いて計算機実験により評価されている。
その結果,提案アルゴリズムは最先端手法よりも高品質であることが確認された。
論文 参考訳(メタデータ) (2021-12-19T13:52:53Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Learning Dynamic Alignment via Meta-filter for Few-shot Learning [94.41887992982986]
少ないショット学習は、学習知識を極めて限定的な(サポート)例で適応させることで、新しいクラスを認識することを目的としている。
異なるローカルサポート情報に従って、クエリ領域とチャネルの両方を効果的に強調表示できる動的アライメントを学びます。
結果として得られたフレームワークは、主要な数発の視覚認識ベンチマークに最新技術を確立します。
論文 参考訳(メタデータ) (2021-03-25T03:29:33Z) - Re-rank Coarse Classification with Local Region Enhanced Features for
Fine-Grained Image Recognition [22.83821575990778]
そこで我々は,Top1の精度を向上させるため,TopN分類結果を局所的に拡張した埋め込み機能を用いて再評価した。
より効果的なセマンティクスグローバル機能を学ぶために、我々は、自動構築された階層的カテゴリ構造上のマルチレベル損失をデザインする。
本手法は,cub-200-2011,stanford cars,fgvc aircraftの3つのベンチマークで最新性能を実現する。
論文 参考訳(メタデータ) (2021-02-19T11:30:25Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
そこで我々は,CutMixに基づく自然拡張拡張戦略であるAttentive CutMixを提案する。
各トレーニングイテレーションにおいて、特徴抽出器から中間注意マップに基づいて最も記述性の高い領域を選択する。
提案手法は単純かつ有効であり,実装が容易であり,ベースラインを大幅に向上させることができる。
論文 参考訳(メタデータ) (2020-03-29T15:01:05Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
少数のサンプルから新しい視覚カテゴリーを学習することを目的としている。
本稿では,自己認識型補完モジュール(SACモジュール)を提案する。
また,数発の分類のために,識別的深層記述子を選択するためのアクティブマスクも生成する。
論文 参考訳(メタデータ) (2020-03-02T14:07:05Z) - Progressive Local Filter Pruning for Image Retrieval Acceleration [43.97722250091591]
画像検索高速化のための新しいプログレッシブ・ローカルフィルタ・プルーニング(PLFP)法を提案する。
具体的には、各フィルタの局所的な幾何学的性質を分析し、隣人に置き換えられるものを選択する。
このように、モデルの表現能力は保持される。
論文 参考訳(メタデータ) (2020-01-24T04:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。