論文の概要: Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal
- arxiv url: http://arxiv.org/abs/2408.16012v1
- Date: Fri, 16 Aug 2024 07:02:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:32:17.747597
- Title: Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal
- Title(参考訳): 複数単語表現の特徴推定に大規模言語モデルを用いる:具体性,有価性,覚醒性
- Authors: Gonzalo Martínez, Juan Diego Molero, Sandra González, Javier Conde, Marc Brysbaert, Pedro Reviriego,
- Abstract要約: 大規模言語モデル(LLM)は、多語表現のニュアンス付き意味を捉えることができる。
ChatGPT-4oは,多語表現における人間の具体性評価と強い相関を示した。
これらの知見は、LLMが価値ある心理言語学的データを生成する可能性を強調している。
- 参考スコア(独自算出の注目度): 2.7013338932521416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the potential of large language models (LLMs) to provide accurate estimates of concreteness, valence and arousal for multi-word expressions. Unlike previous artificial intelligence (AI) methods, LLMs can capture the nuanced meanings of multi-word expressions. We systematically evaluated ChatGPT-4o's ability to predict concreteness, valence and arousal. In Study 1, ChatGPT-4o showed strong correlations with human concreteness ratings (r = .8) for multi-word expressions. In Study 2, these findings were repeated for valence and arousal ratings of individual words, matching or outperforming previous AI models. Study 3 extended the prevalence and arousal analysis to multi-word expressions and showed promising results despite the lack of large-scale human benchmarks. These findings highlight the potential of LLMs for generating valuable psycholinguistic data related to multiword expressions. To help researchers with stimulus selection, we provide datasets with AI norms of concreteness, valence and arousal for 126,397 English single words and 63,680 multi-word expressions
- Abstract(参考訳): 本研究では,多語表現の具体性,有価度,覚醒度を正確に推定する大規模言語モデル (LLM) の可能性について検討する。
従来の人工知能(AI)の手法とは異なり、LLMは多語表現のニュアンスな意味を捉えることができる。
本研究は,ChatGPT-4oの硬度,粘度,覚醒の予測能力について系統的に評価した。
研究1では,ChatGPT-4oは多語表現に対する人間の具体性評価(r = .8)と強い相関を示した。
研究2では, 個々の単語の有意性と覚醒的評価, マッチング, 過去のAIモデルよりも優れていた。
研究3では,大規模人体ベンチマークの欠如にもかかわらず,有望な結果を示した。
これらの知見は,多語表現に関連する有意義な心理言語学的データを生成するLLMの可能性を明らかにするものである。
研究者が刺激選択を行うのを助けるために、126,397の英語単語と63,680の多語表現に対して、具体性、価、覚醒のAI規範を持つデータセットを提供する。
関連論文リスト
- Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - Multimodality and Attention Increase Alignment in Natural Language
Prediction Between Humans and Computational Models [0.8139163264824348]
人間は、次の単語の処理を容易にするために、視覚的手がかりのような健全なマルチモーダル機能を使用することが知られている。
マルチモーダル計算モデルは、視覚的注意機構を使用して視覚的および言語的データを統合して、次の単語の確率を割り当てることができる。
本研究では,人間からの予測可能性の推定値が,マルチモーダルモデルと非モーダルモデルとのスコアとより密に一致していることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:30:07Z) - Investigating the Utility of Surprisal from Large Language Models for
Speech Synthesis Prosody [4.081433571732691]
本稿では,音声の韻律合成を支援する機能として,ある文脈における単語の予測可能性の尺度である単語代名詞の使用について検討する。
様々な大きさの英語テキストと大言語モデル(LLM)を用いて実験を行う。
語源と語長は適度に相関し,関連性はあるものの言語使用の異なる側面を捉えていることが示唆された。
論文 参考訳(メタデータ) (2023-06-16T12:49:44Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - Multitasking Models are Robust to Structural Failure: A Neural Model for
Bilingual Cognitive Reserve [78.3500985535601]
マルチタスク学習とニューロン障害に対する堅牢性との間には,驚くべき関連性がある。
実験の結果,バイリンガル言語モデルは様々なニューロン摂動下で高い性能を維持していることがわかった。
線形表現学習を数学的に解析することにより,このロバスト性を理論的に正当化する。
論文 参考訳(メタデータ) (2022-10-20T22:23:27Z) - Unsupervised Multimodal Word Discovery based on Double Articulation
Analysis with Co-occurrence cues [7.332652485849632]
ヒトの幼児は、言語に関する最小限の事前知識で口頭語彙を取得する。
本研究では,音声単位を発見するための教師なし学習手法を提案する。
提案手法は教師なし学習を用いて音声信号から単語と音素を取得することができる。
論文 参考訳(メタデータ) (2022-01-18T07:31:59Z) - Idiomatic Expression Identification using Semantic Compatibility [8.355785779504869]
文が慣用的表現を持っているかどうかを検知し,それを局所化するタスクについて検討する。
本稿では,これらの表現を識別するためのアテンションフロー機構を備えた多段階ニューラルアーキテクチャを提案する。
このモデルの健全な特徴は、トレーニング中に見えないイディオムを識別できることであり、競争ベースラインよりも1.4%から30.8%向上している。
論文 参考訳(メタデータ) (2021-10-19T15:44:28Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) を数学的適合のテクトダイナミックな評価のためのベンチマークで検証した。
以上の結果から, TLM は SDM に匹敵する性能が得られることが示された。
しかし、さらなる分析は、TLMがイベント知識の重要な側面を捉えていないことを一貫して示唆している。
論文 参考訳(メタデータ) (2021-07-22T20:52:26Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Evaluating Models of Robust Word Recognition with Serial Reproduction [8.17947290421835]
広範囲確率的生成言語モデルと人間の言語的期待を捉える能力の比較を行った。
先行した言語的文脈の抽象表現を利用するこれらのモデルは、連続再生の過程で人々が行った変化を最もよく予測する。
論文 参考訳(メタデータ) (2021-01-24T20:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。