Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data
- URL: http://arxiv.org/abs/2408.16130v1
- Date: Wed, 28 Aug 2024 20:35:38 GMT
- Title: Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data
- Authors: Dilermando Queiroz, André Anjos, Lilian Berton,
- Abstract summary: This study aims to investigate the effectiveness of using the backbone of Foundation Models as an embedding extractor.
We propose utilizing these groups in different stages of bias mitigation, including pre-processing, in-processing, and evaluation.
- Score: 2.7436483977171333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring consistent performance across diverse populations and incorporating fairness into machine learning models are crucial for advancing medical image diagnostics and promoting equitable healthcare. However, many databases do not provide protected attributes or contain unbalanced representations of demographic groups, complicating the evaluation of model performance across different demographics and the application of bias mitigation techniques that rely on these attributes. This study aims to investigate the effectiveness of using the backbone of Foundation Models as an embedding extractor for creating groups that represent protected attributes, such as gender and age. We propose utilizing these groups in different stages of bias mitigation, including pre-processing, in-processing, and evaluation. Using databases in and out-of-distribution scenarios, it is possible to identify that the method can create groups that represent gender in both databases and reduce in 4.44% the difference between the gender attribute in-distribution and 6.16% in out-of-distribution. However, the model lacks robustness in handling age attributes, underscoring the need for more fundamentally fair and robust Foundation models. These findings suggest a role in promoting fairness assessment in scenarios where we lack knowledge of attributes, contributing to the development of more equitable medical diagnostics.
Related papers
- Achieve Fairness without Demographics for Dermatological Disease
Diagnosis [17.792332189055223]
We propose a method enabling fair predictions for sensitive attributes during the testing phase without using such information during training.
Inspired by prior work highlighting the impact of feature entanglement on fairness, we enhance the model features by capturing the features related to the sensitive and target attributes.
This ensures that the model can only classify based on the features related to the target attribute without relying on features associated with sensitive attributes.
arXiv Detail & Related papers (2024-01-16T02:49:52Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - The Role of Subgroup Separability in Group-Fair Medical Image
Classification [18.29079361470428]
We find a relationship between subgroup separability, subgroup disparities, and performance degradation when models are trained on data with systematic bias such as underdiagnosis.
Our findings shed new light on the question of how models become biased, providing important insights for the development of fair medical imaging AI.
arXiv Detail & Related papers (2023-07-06T06:06:47Z) - Auditing ICU Readmission Rates in an Clinical Database: An Analysis of
Risk Factors and Clinical Outcomes [0.0]
This study presents a machine learning pipeline for clinical data classification in the context of a 30-day readmission problem.
The fairness audit uncovers disparities in equal opportunity, predictive parity, false positive rate parity, and false negative rate parity criteria.
The study suggests the need for collaborative efforts among researchers, policymakers, and practitioners to address bias and fairness in artificial intelligence (AI) systems.
arXiv Detail & Related papers (2023-04-12T17:09:38Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
This paper studies a model that protects the privacy of individuals' sensitive information while also allowing it to learn non-discriminatory predictors.
A key characteristic of the proposed model is to enable the adoption of off-the-selves and non-private fair models to create a privacy-preserving and fair model.
arXiv Detail & Related papers (2022-04-11T14:42:54Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
We propose a novel algorithm that can effectively identify and treat latent discriminating features.
The approach helps to collect discrimination-free features that would improve the model performance.
arXiv Detail & Related papers (2020-02-26T10:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.