論文の概要: Estimating Dynamic Flow Features in Groups of Tracked Objects
- arxiv url: http://arxiv.org/abs/2408.16190v1
- Date: Thu, 29 Aug 2024 01:06:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 15:25:12.152079
- Title: Estimating Dynamic Flow Features in Groups of Tracked Objects
- Title(参考訳): 追従対象群の動的流れ特性の推定
- Authors: Tanner D. Harms, Steven L. Brunton, Beverley J. McKeon,
- Abstract要約: 本研究の目的は,不完全なトレーサを持つ複雑な特徴豊富な画像列を特徴とする,勾配に基づく動的システム解析を実世界のアプリケーションに拡張することである。
提案手法は,2つの異なる対象クラスの1つの画像列における動作解析を含む高度な研究を可能にする。
- 参考スコア(独自算出の注目度): 2.4344640336100936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpreting motion captured in image sequences is crucial for a wide range of computer vision applications. Typical estimation approaches include optical flow (OF), which approximates the apparent motion instantaneously in a scene, and multiple object tracking (MOT), which tracks the motion of subjects over time. Often, the motion of objects in a scene is governed by some underlying dynamical system which could be inferred by analyzing the motion of groups of objects. Standard motion analyses, however, are not designed to intuit flow dynamics from trajectory data, making such measurements difficult in practice. The goal of this work is to extend gradient-based dynamical systems analyses to real-world applications characterized by complex, feature-rich image sequences with imperfect tracers. The tracer trajectories are tracked using deep vision networks and gradients are approximated using Lagrangian gradient regression (LGR), a tool designed to estimate spatial gradients from sparse data. From gradients, dynamical features such as regions of coherent rotation and transport barriers are identified. The proposed approach is affordably implemented and enables advanced studies including the motion analysis of two distinct object classes in a single image sequence. Two examples of the method are presented on data sets for which standard gradient-based analyses do not apply.
- Abstract(参考訳): 画像シーケンスでキャプチャされた動作の解釈は、幅広いコンピュータビジョン応用に不可欠である。
典型的な推定手法としては、シーン内の見かけの動きを瞬時に近似する光学フロー(OF)と、時間とともに被写体の動きを追跡する複数の物体追跡(MOT)がある。
多くの場合、シーン内の物体の運動は、対象群の運動を分析することによって推論できる基礎となる力学系によって制御される。
しかし、標準運動解析は、軌跡データから流れのダイナミクスを導出するためには設計されておらず、実際はそのような測定を困難にしている。
この研究の目的は、勾配に基づく力学系解析を、不完全なトレーサを持つ複雑な特徴豊富な画像列を特徴とする実世界のアプリケーションに拡張することである。
トレーサ軌道はディープビジョンネットワークを用いて追跡され、スパースデータから空間勾配を推定するためのツールであるラグランジアン勾配回帰(LGR)を用いて勾配を近似する。
勾配から、コヒーレント回転領域や輸送障壁などの動的特徴を同定する。
提案手法は,2つの異なる対象クラスの1つの画像列における動作解析を含む高度な研究を可能にする。
この手法の2つの例は、標準勾配に基づく解析が適用されないデータセットに示される。
関連論文リスト
- DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
本稿では,スムーズなカメラ軌跡を推定し,野生のカジュアルビデオのための高密度点雲を得るための,簡潔でエレガントでロバストなパイプラインを提案する。
提案手法は,複雑な動的課題シーンにおいても,カメラポーズ推定による最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T13:01:16Z) - Neuromorphic Vision-based Motion Segmentation with Graph Transformer Neural Network [4.386534439007928]
本稿では,GTNNと呼ばれるグラフトランスフォーマーニューラルネットワークを用いたイベントベース動作分割アルゴリズムを提案する。
提案アルゴリズムは, イベント間の局所的および大域的相関を明らかにするために, 一連の非線形変換により, イベントストリームを3次元グラフとして処理する。
GTNNは、動的背景変動、動きパターン、および様々な大きさと速度を持つ複数の動的物体の存在下で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-16T22:44:29Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
シーン深度と3次元運動場を協調的に予測する新しいDyna-Depthformerフレームワークを提案する。
まず,多視点の相関を一連の自己・横断的層を通じて活用し,深度特徴表現の強化を図る。
第2に,動的物体の運動場をセマンティック・プレセプションを使わずに推定するワーピングに基づく運動ネットワークを提案する。
論文 参考訳(メタデータ) (2023-01-14T09:43:23Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
本稿では,一対の光流からの高密度対応に基づく動画の高密度間接構造抽出手法を提案する。
不規則点軌道データを処理するために,新しいニューラルネットワークアーキテクチャを提案する。
MPIシンテルデータセットを用いた実験により,我々のシステムはより正確なカメラ軌道を生成することがわかった。
論文 参考訳(メタデータ) (2022-07-19T09:19:45Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
本稿では,ニューラルネットワークによってパラメータ化される暗黙的値関数として,オブジェクト点群と相対的タスク軌跡の両方を符号化する新しいオブジェクト表現であるNeural Motion Fieldsを提案する。
このオブジェクト中心表現は、SE(3)空間上の連続分布をモデル化し、サンプリングベースのMPCを利用して、この値関数を最適化することで、反応的に把握することができる。
論文 参考訳(メタデータ) (2022-06-29T18:47:05Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOTはインスタンスセグメンテーションとマルチビュー幾何を組み合わせて、動的オブジェクトのマスクを生成する。
実際にどのオブジェクトが動いているかを判断するために、DOTは、潜在的にダイナミックなオブジェクトの最初のインスタンスを抽出し、次に推定されたカメラモーションで、測光再投射誤差を最小限にして、そのようなオブジェクトを追跡する。
提案手法はORB-SLAM 2の精度とロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-09-30T18:36:28Z) - Any Motion Detector: Learning Class-agnostic Scene Dynamics from a
Sequence of LiDAR Point Clouds [4.640835690336654]
動き検出と動きパラメータ推定のための時間的文脈アグリゲーションの新しいリアルタイム手法を提案する。
本稿では,固有点雲列の固有オドメトリック変換に匹敵する性能で,リアルタイムな推論を実現するためのエゴモーション補償層を提案する。
論文 参考訳(メタデータ) (2020-04-24T10:40:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。