UDD: Dataset Distillation via Mining Underutilized Regions
- URL: http://arxiv.org/abs/2408.16268v1
- Date: Thu, 29 Aug 2024 05:13:01 GMT
- Title: UDD: Dataset Distillation via Mining Underutilized Regions
- Authors: Shiguang Wang, Zhongyu Zhang, Jian Cheng,
- Abstract summary: We propose UDD, a novel approach to identify and exploit underutilized regions in synthetic images.
In this paper, we propose UDD, a novel approach to identify and exploit the underutilized regions to make them informative and discriminate.
Our method improves the utilization of the synthetic dataset and outperforms the state-of-the-art methods on various datasets.
- Score: 10.034543678588578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dataset distillation synthesizes a small dataset such that a model trained on this set approximates the performance of the original dataset. Recent studies on dataset distillation focused primarily on the design of the optimization process, with methods such as gradient matching, feature alignment, and training trajectory matching. However, little attention has been given to the issue of underutilized regions in synthetic images. In this paper, we propose UDD, a novel approach to identify and exploit the underutilized regions to make them informative and discriminate, and thus improve the utilization of the synthetic dataset. Technically, UDD involves two underutilized regions searching policies for different conditions, i.e., response-based policy and data jittering-based policy. Compared with previous works, such two policies are utilization-sensitive, equipping with the ability to dynamically adjust the underutilized regions during the training process. Additionally, we analyze the current model optimization problem and design a category-wise feature contrastive loss, which can enhance the distinguishability of different categories and alleviate the shortcomings of the existing multi-formation methods. Experimentally, our method improves the utilization of the synthetic dataset and outperforms the state-of-the-art methods on various datasets, such as MNIST, FashionMNIST, SVHN, CIFAR-10, and CIFAR-100. For example, the improvements on CIFAR-10 and CIFAR-100 are 4.0\% and 3.7\% over the next best method with IPC=1, by mining the underutilized regions.
Related papers
- Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
We propose a novel parameterization method dubbed Hierarchical Generative Latent Distillation (H-GLaD)
This method systematically explores hierarchical layers within the generative adversarial networks (GANs)
In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Cross-feature Contrastive Loss for Decentralized Deep Learning on
Heterogeneous Data [8.946847190099206]
We present a novel approach for decentralized learning on heterogeneous data.
Cross-features for a pair of neighboring agents are the features obtained from the data of an agent with respect to the model parameters of the other agent.
Our experiments show that the proposed method achieves superior performance (0.2-4% improvement in test accuracy) compared to other existing techniques for decentralized learning on heterogeneous data.
arXiv Detail & Related papers (2023-10-24T14:48:23Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Dataset Condensation with Contrastive Signals [41.195453119305746]
gradient matching-based dataset synthesis (DC) methods can achieve state-of-the-art performance when applied to data-efficient learning tasks.
In this study, we prove that the existing DC methods can perform worse than the random selection method when task-irrelevant information forms a significant part of the training dataset.
We propose dataset condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes.
arXiv Detail & Related papers (2022-02-07T03:05:32Z) - Augmentation Strategies for Learning with Noisy Labels [3.698228929379249]
We evaluate different augmentation strategies for algorithms tackling the "learning with noisy labels" problem.
We find that using one set of augmentations for loss modeling tasks and another set for learning is the most effective.
We introduce this augmentation strategy to the state-of-the-art technique and demonstrate that we can improve performance across all evaluated noise levels.
arXiv Detail & Related papers (2021-03-03T02:19:35Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.