Enhancing Customer Churn Prediction in Telecommunications: An Adaptive Ensemble Learning Approach
- URL: http://arxiv.org/abs/2408.16284v1
- Date: Thu, 29 Aug 2024 06:27:42 GMT
- Title: Enhancing Customer Churn Prediction in Telecommunications: An Adaptive Ensemble Learning Approach
- Authors: Mohammed Affan Shaikhsurab, Pramod Magadum,
- Abstract summary: This paper proposes a novel adaptive ensemble learning framework for highly accurate customer churn prediction.
The framework integrates multiple base models, including XGBoost, LightGBM, LSTM, a Multi-Layer Perceptron (MLP) neural network, and Support Vector Machine (SVM)
The research achieves a remarkable 99.28% accuracy, signifying a major advancement in churn prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Customer churn, the discontinuation of services by existing customers, poses a significant challenge to the telecommunications industry. This paper proposes a novel adaptive ensemble learning framework for highly accurate customer churn prediction. The framework integrates multiple base models, including XGBoost, LightGBM, LSTM, a Multi-Layer Perceptron (MLP) neural network, and Support Vector Machine (SVM). These models are strategically combined using a stacking ensemble method, further enhanced by meta-feature generation from base model predictions. A rigorous data preprocessing pipeline, coupled with a multi-faceted feature engineering approach, optimizes model performance. The framework is evaluated on three publicly available telecom churn datasets, demonstrating substantial accuracy improvements over state-of-the-art techniques. The research achieves a remarkable 99.28% accuracy, signifying a major advancement in churn prediction.The implications of this research for developing proactive customer retention strategies withinthe telecommunications industry are discussed.
Related papers
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - Revolutionizing Retail Analytics: Advancing Inventory and Customer Insight with AI [0.0]
This paper introduces an innovative approach utilizing cutting-edge machine learning technologies.
We aim to create an advanced smart retail analytics system (SRAS), leveraging these technologies to enhance retail efficiency and customer engagement.
arXiv Detail & Related papers (2024-02-24T11:03:01Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Churn Prediction via Multimodal Fusion Learning:Integrating Customer
Financial Literacy, Voice, and Behavioral Data [14.948017876322597]
This paper proposes a multimodal fusion learning model for identifying customer churn risk levels in financial service providers.
Our approach integrates customer sentiments financial literacy (FL) level, and financial behavioral data.
Our novel approach demonstrates a marked improvement in churn prediction, achieving a test accuracy of 91.2%, a Mean Average Precision (MAP) score of 66, and a Macro-Averaged F1 score of 54.
arXiv Detail & Related papers (2023-12-03T06:28:55Z) - PeFLL: Personalized Federated Learning by Learning to Learn [16.161876130822396]
We present PeFLL, a new personalized federated learning algorithm that improves over the state-of-the-art in three aspects.
At the core of PeFLL lies a learning-to-learn approach that jointly trains an embedding network and a hypernetwork.
arXiv Detail & Related papers (2023-06-08T19:12:42Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - FedNet2Net: Saving Communication and Computations in Federated Learning
with Model Growing [0.0]
Federated learning (FL) is a recently developed area of machine learning.
In this paper, a novel scheme based on the notion of "model growing" is proposed.
The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation.
arXiv Detail & Related papers (2022-07-19T21:54:53Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Social Network Analytics for Churn Prediction in Telco: Model Building,
Evaluation and Network Architecture [8.592714155264613]
Social network analytics are being used in the telecommunication industry to predict customer churn with great success.
We benchmark different strategies for constructing a relational learner by applying them to a total of eight call-detail record datasets.
We provide guidelines on how to apply social networks analytics for churn prediction in the telecommunication industry in an optimal way.
arXiv Detail & Related papers (2020-01-18T17:09:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.