論文の概要: Flexible framework for generating synthetic electrocardiograms and photoplethysmograms
- arxiv url: http://arxiv.org/abs/2408.16291v1
- Date: Thu, 29 Aug 2024 06:48:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:43:40.503797
- Title: Flexible framework for generating synthetic electrocardiograms and photoplethysmograms
- Title(参考訳): 人工心電図と光胸腺図作成のためのフレキシブルな枠組み
- Authors: Katri Karhinoja, Antti Vasankari, Jukka-Pekka Sirkiä, Antti Airola, David Wong, Matti Kaisti,
- Abstract要約: 心電図 (ECG) と光麻痺 (mography) の2つの信号モダリティのための合成生体信号モデルを開発した。
このモデルは、呼吸調節や身体的ストレスによる心拍の変化などの生理的効果を考慮に入れた現実的な信号を生成する。
我々は,MIT-BIH arrythmia セットと新しいジェネレータの実際の心電図信号を用いて,心電図Rピークを検出するLSTMを訓練した。
- 参考スコア(独自算出の注目度): 1.023858929087312
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: By generating synthetic biosignals, the quantity and variety of health data can be increased. This is especially useful when training machine learning models by enabling data augmentation and introduction of more physiologically plausible variation to the data. For these purposes, we have developed a synthetic biosignal model for two signal modalities, electrocardiography (ECG) and photoplethysmography (PPG). The model produces realistic signals that account for physiological effects such as breathing modulation and changes in heart rate due to physical stress. Arrhythmic signals can be generated with beat intervals extracted from real measurements. The model also includes a flexible approach to adding different kinds of noise and signal artifacts. The noise is generated from power spectral densities extracted from both measured noisy signals and modeled power spectra. Importantly, the model also automatically produces labels for noise, segmentation (e.g. P and T waves, QRS complex, for electrocardiograms), and artifacts. We assessed how this comprehensive model can be used in practice to improve the performance of models trained on ECG or PPG data. For example, we trained an LSTM to detect ECG R-peaks using both real ECG signals from the MIT-BIH arrythmia set and our new generator. The F1 score of the model was 0.83 using real data, in comparison to 0.98 using our generator. In addition, the model can be used for example in signal segmentation, quality detection and bench-marking detection algorithms. The model code has been released in \url{https://github.com/UTU-Health-Research/framework_for_synthetic_biosignals}
- Abstract(参考訳): 合成バイオシグナーを生成することにより、健康データの量と多様性を増大させることができる。
これは、データ拡張と、より生理学的に妥当なバリエーションをデータに導入することで、機械学習モデルをトレーニングするときに特に有用である。
これらの目的のために、心電図(ECG)と光胸腺図(PPG)の2つの信号の合成生信号モデルを開発した。
このモデルは、呼吸調節や身体的ストレスによる心拍の変化などの生理的効果を考慮に入れた現実的な信号を生成する。
実測値から抽出したビート間隔で不整脈信号を生成することができる。
このモデルには、様々な種類のノイズや信号アーティファクトを追加する柔軟なアプローチも含まれている。
ノイズは、測定されたノイズ信号とモデル化されたパワースペクトルから抽出されたパワースペクトル密度から生成される。
重要なことに、このモデルは、ノイズ、セグメンテーション(例えば、PとT波、QRS複合体、心電図)、アーティファクトのラベルを自動生成する。
我々は,ECGデータやPSGデータに基づいてトレーニングしたモデルの性能を向上させるために,この包括的モデルを実際にどのように利用できるかを評価する。
例えば、LSTMをトレーニングして、MIT-BIH arrythmia セットの実際のECG信号と新しいジェネレータの両方を用いて、ECG R-peaksを検出する。
実データを用いたF1スコアは0.83であり, 生成装置を用いた0.98と比較した。
さらに、このモデルは信号のセグメンテーション、品質検出、ベンチマーキング検出アルゴリズムなどでも利用できる。
モデルコードは \url{https://github.com/UTU-Health-Research/framework_for_synthetic_biosignals} でリリースされた。
関連論文リスト
- DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
本研究は,GAN(Generative Adversarial Network)ファミリーから5つの異なるモデルの合成ECG生成能力について検討した。
以上の結果から, 全ての実験モデルにおいて, 形態学的特徴に高い類似性を有する許容心拍の大量生成に成功できることが示唆された。
論文 参考訳(メタデータ) (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Representing and Denoising Wearable ECG Recordings [12.378631176671773]
ウェアラブルセンサから得られるECGの構造的ノイズ過程をシミュレートする統計モデルを構築した。
変動解析のためのビート・ツー・ビート表現を設計し,心電図を識別する因子分析に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-11-30T21:33:11Z) - A Generative Adversarial Approach To ECG Synthesis And Denoising [0.0]
本稿では,GANを用いて現実的なECG信号を生成する手法を提案する。
我々はこれらを利用してECG信号の最先端のフィルタリング品質を実現するデノナイズオートエンコーダを訓練し評価する。
論文 参考訳(メタデータ) (2020-09-06T10:17:33Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
本稿では,心拍のリアルタイムセグメンテーションのためのディープラーニングモデルを提案する。
提案アルゴリズムはDENS-ECGアルゴリズムと呼ばれ、畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)モデルを組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-18T13:13:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。