論文の概要: Rethinking Sparse Lexical Representations for Image Retrieval in the Age of Rising Multi-Modal Large Language Models
- arxiv url: http://arxiv.org/abs/2408.16296v1
- Date: Thu, 29 Aug 2024 06:54:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:43:40.497932
- Title: Rethinking Sparse Lexical Representations for Image Retrieval in the Age of Rising Multi-Modal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルにおける画像検索のためのスパース語彙表現の再考
- Authors: Kengo Nakata, Daisuke Miyashita, Youyang Ng, Yasuto Hoshi, Jun Deguchi,
- Abstract要約: 視覚的プロンプトをサポートするマルチモーダル大言語モデル(M-LLM)を利用することで,画像の特徴を抽出し,テキストデータに変換する。
従来の視覚言語モデルを用いた手法と比較して,画像検索手法の精度とリコール性能が優れていることを示す。
また,検索クエリにキーワードを反復的に組み込むことにより,検索性能が向上することを示した。
- 参考スコア(独自算出の注目度): 2.3301643766310374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we rethink sparse lexical representations for image retrieval. By utilizing multi-modal large language models (M-LLMs) that support visual prompting, we can extract image features and convert them into textual data, enabling us to utilize efficient sparse retrieval algorithms employed in natural language processing for image retrieval tasks. To assist the LLM in extracting image features, we apply data augmentation techniques for key expansion and analyze the impact with a metric for relevance between images and textual data. We empirically show the superior precision and recall performance of our image retrieval method compared to conventional vision-language model-based methods on the MS-COCO, PASCAL VOC, and NUS-WIDE datasets in a keyword-based image retrieval scenario, where keywords serve as search queries. We also demonstrate that the retrieval performance can be improved by iteratively incorporating keywords into search queries.
- Abstract(参考訳): 本稿では,画像検索のためのスパース語彙表現を再考する。
視覚的プロンプトをサポートするマルチモーダル大言語モデル(M-LLM)を利用することで、画像の特徴を抽出し、テキストデータに変換することができ、画像検索タスクに自然言語処理に使用される効率的なスパース検索アルゴリズムを利用できる。
画像特徴抽出におけるLCMの補助として,キー展開のためのデータ拡張手法を適用し,画像とテキストデータの関連性を示す指標を用いてその影響を分析する。
キーワードを用いた画像検索シナリオにおいて,MS-COCO,PASCAL VOC,NAS-WIDEデータセットの従来の視覚言語モデルを用いた手法と比較して,画像検索手法の精度とリコール性能を実証的に示す。
また,検索クエリにキーワードを反復的に組み込むことにより,検索性能が向上することを示した。
関連論文リスト
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - Unified Text-to-Image Generation and Retrieval [96.72318842152148]
MLLM(Multimodal Large Language Models)の文脈における統一フレームワークを提案する。
まず,MLLMの内在的識別能力について検討し,学習自由な方法で検索を行うための生成的検索手法を提案する。
次に、自動回帰生成方式で生成と検索を統一し、生成した画像と検索した画像の最も適合した画像を選択する自律的決定モジュールを提案する。
論文 参考訳(メタデータ) (2024-06-09T15:00:28Z) - Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models [17.171715290673678]
本稿では,ユーザの関連性フィードバックに基づいてクエリを精査できる対話型画像検索システムを提案する。
本システムは,視覚言語モデル(VLM)に基づく画像キャプタを組み込んで,テキストベースのクエリの質を高める。
本システムを評価するために,MSR-VTTビデオ検索データセットを画像検索タスクに適用することにより,新たなデータセットをキュレートする。
論文 参考訳(メタデータ) (2024-04-29T14:46:35Z) - Large Language Models for Captioning and Retrieving Remote Sensing
Images [4.499596985198142]
RS-CapRetはリモートセンシングタスクのためのVision and Languageメソッドである。
リモートセンシング画像の記述を生成し、テキスト記述から画像を取得することができる。
論文 参考訳(メタデータ) (2024-02-09T15:31:01Z) - PICS: Pipeline for Image Captioning and Search [0.0]
本稿では,大規模画像レポジトリの編成に固有の複雑さに対処するために,PICS(Pipeline for Image Captioning and Search)を提案する。
このアプローチは、意味のあるAI生成キャプションが大規模なデータベースにおける画像の検索可能性とアクセシビリティを大幅に向上させる、という理解に根ざしている。
PICSの重要性は、画像データベースシステムを変換し、現代のデジタル資産管理の要求を満たすために機械学習と自然言語処理の力を利用する可能性にある。
論文 参考訳(メタデータ) (2024-02-01T03:08:21Z) - Enhancing Image Retrieval : A Comprehensive Study on Photo Search using
the CLIP Mode [0.27195102129095]
写真検索はCLIP(Contrastive Language- Image Pretraining)モデルの導入によって大きな進歩をみせた。
この要約は、CLIPの基本原理を要約し、写真検索の分野を前進させる可能性を強調している。
論文 参考訳(メタデータ) (2024-01-24T17:35:38Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - Efficient Image-Text Retrieval via Keyword-Guided Pre-Screening [53.1711708318581]
現在の画像テキスト検索法は、N$関連時間複雑さに悩まされている。
本稿では,画像テキスト検索のための簡易かつ効果的なキーワード誘導事前スクリーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-14T09:36:42Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
マルチモーダルな名前付きエンティティ認識(NER)と関係抽出(RE)は、関連画像情報を活用してNERとREの性能を向上させることを目的としている。
新たなマルチモーダル検索フレームワーク(MoRe)を提案する。
MoReはテキスト検索モジュールと画像ベースの検索モジュールを含み、入力されたテキストと画像の関連知識をそれぞれ知識コーパスで検索する。
論文 参考訳(メタデータ) (2022-12-03T13:11:32Z) - Progressive Learning for Image Retrieval with Hybrid-Modality Queries [48.79599320198615]
ハイブリッドモダリティクエリによる画像検索(CTI-IR)
我々は、CTI-IRタスクを3段階の学習問題に分解し、ハイブリッドモダリティクエリを用いて画像検索のための複雑な知識を段階的に学習する。
提案モデルは,Fashion-IQおよびShoesベンチマークデータセットにおいて,Recall@K平均の最先端手法を24.9%,9.5%向上させる。
論文 参考訳(メタデータ) (2022-04-24T08:10:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。