論文の概要: TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis
- arxiv url: http://arxiv.org/abs/2408.16391v2
- Date: Mon, 23 Dec 2024 12:31:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:43.665789
- Title: TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis
- Title(参考訳): TempoKGAT: 時間グラフ解析のための新しいグラフ注意ネットワークアプローチ
- Authors: Lena Sasal, Daniel Busby, Abdenour Hadid,
- Abstract要約: 本稿では,時間遅延重みと空間領域上の選択的な隣接集約機構を組み合わせた新しいタイプのグラフアテンションネットワークであるTempoKGATを提案する。
我々は、時間的データを含む交通、エネルギー、健康セクターから複数のデータセットに対するアプローチを評価する。
- 参考スコア(独自算出の注目度): 3.5707423185282656
- License:
- Abstract: Graph neural networks (GNN) have shown significant capabilities in handling structured data, yet their application to dynamic, temporal data remains limited. This paper presents a new type of graph attention network, called TempoKGAT, which combines time-decaying weight and a selective neighbor aggregation mechanism on the spatial domain, which helps uncover latent patterns in the graph data. In this approach, a top-k neighbor selection based on the edge weights is introduced to represent the evolving features of the graph data. We evaluated the performance of our TempoKGAT on multiple datasets from the traffic, energy, and health sectors involving spatio-temporal data. We compared the performance of our approach to several state-of-the-art methods found in the literature on several open-source datasets. Our method shows superior accuracy on all datasets. These results indicate that TempoKGAT builds on existing methodologies to optimize prediction accuracy and provide new insights into model interpretation in temporal contexts.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は構造化データを扱う上で重要な機能を示しているが、その動的かつ時間的なデータへの応用は限定的だ。
本稿では,時間遅延重みと空間領域上の選択的な隣接集約機構を組み合わせた新しいグラフアテンションネットワークであるTempoKGATを提案する。
このアプローチでは,グラフデータの進化的特徴を表現するために,エッジ重みに基づくトップk近傍の選択を導入する。
本研究では, 時空間データを含む交通, エネルギー, 健康部門から得られた複数のデータセットを用いたTempoKGATの性能評価を行った。
提案手法の性能を,いくつかのオープンソースデータセットの文献に見られるいくつかの最先端手法と比較した。
提案手法は,全データセットに対して高い精度を示す。
これらの結果から,TempoKGATは予測精度を最適化し,時間的文脈におけるモデル解釈に新たな洞察を与えるため,既存の手法に基づいていることが示唆された。
関連論文リスト
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
本稿では,レイテンシが低く,最先端の高レイテンシモデルと競合する連続時間動的グラフ(CTDG)のフレームワークを提案する。
本フレームワークでは,マルチホップ情報を要約したタイムアウェアノード埋め込みを,入ってくるエッジ上のシングルホップ操作のみを用いて計算する。
グラフプリント機能と機械学習を組み合わせることで,競争性能が向上することを示す。
論文 参考訳(メタデータ) (2023-07-17T12:25:52Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - FTM: A Frame-level Timeline Modeling Method for Temporal Graph
Representation Learning [47.52733127616005]
本稿では,短期的特徴と長期的特徴の両方を捉えるのに役立つフレームレベルタイムラインモデリング(FTM)手法を提案する。
我々の手法は、ほとんどの時間的GNNで簡単に組み立てることができる。
論文 参考訳(メタデータ) (2023-02-23T06:53:16Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
本稿では,時間的予測に基づくアプリケーションにグラフストリームデータを活用するための汎用フレームワークを提案する。
提案フレームワークは,適切なグラフ時系列表現を学習するための新しい手法を含む。
トップ3の時間モデルは常に新しい$epsilon$-graphの時系列表現を利用するモデルであることが分かりました。
論文 参考訳(メタデータ) (2020-09-21T16:48:29Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。