Instruction-tuned Large Language Models for Machine Translation in the Medical Domain
- URL: http://arxiv.org/abs/2408.16440v1
- Date: Thu, 29 Aug 2024 11:05:54 GMT
- Title: Instruction-tuned Large Language Models for Machine Translation in the Medical Domain
- Authors: Miguel Rios,
- Abstract summary: Large Language Models (LLMs) have shown promising results on machine translation for high resource language pairs and domains.
In this study, we compare the performance between baseline LLMs and instruction-tuned LLMs in the medical domain.
- Score: 1.0152838128195465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown promising results on machine translation for high resource language pairs and domains. However, in specialised domains (e.g. medical) LLMs have shown lower performance compared to standard neural machine translation models. The consistency in the machine translation of terminology is crucial for users, researchers, and translators in specialised domains. In this study, we compare the performance between baseline LLMs and instruction-tuned LLMs in the medical domain. In addition, we introduce terminology from specialised medical dictionaries into the instruction formatted datasets for fine-tuning LLMs. The instruction-tuned LLMs significantly outperform the baseline models with automatic metrics.
Related papers
- Can General-Purpose Large Language Models Generalize to English-Thai Machine Translation ? [2.1969983462375318]
Large language models (LLMs) perform well on common tasks but struggle with generalization in low-resource and low-computation settings.
We examine this limitation by testing various LLMs and specialized translation models on English-Thai machine translation and code-switching datasets.
arXiv Detail & Related papers (2024-10-22T16:26:03Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.
Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation [67.24113079928668]
We present LexMatcher, a method for data curation driven by the coverage of senses found in bilingual dictionaries.
Our approach outperforms the established baselines on the WMT2022 test sets.
arXiv Detail & Related papers (2024-06-03T15:30:36Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - Large Language Models "Ad Referendum": How Good Are They at Machine
Translation in the Legal Domain? [0.0]
This study evaluates the machine translation (MT) quality of two state-of-the-art large language models (LLMs) against a tradition-al neural machine translation (NMT) system across four language pairs in the legal domain.
It combines automatic evaluation met-rics (AEMs) and human evaluation (HE) by professional transla-tors to assess translation ranking, fluency and adequacy.
arXiv Detail & Related papers (2024-02-12T14:40:54Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - Local Large Language Models for Complex Structured Medical Tasks [0.0]
This paper introduces an approach that combines the language reasoning capabilities of large language models with the benefits of local training to tackle complex, domain-specific tasks.
Specifically, the authors demonstrate their approach by extracting structured condition codes from pathology reports.
arXiv Detail & Related papers (2023-08-03T12:36:13Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.