LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation
- URL: http://arxiv.org/abs/2407.12126v2
- Date: Fri, 26 Jul 2024 12:37:58 GMT
- Title: LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation
- Authors: Bunyamin Keles, Murat Gunay, Serdar I. Caglar,
- Abstract summary: This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine translation is indispensable in healthcare for enabling the global dissemination of medical knowledge across languages. However, complex medical terminology poses unique challenges to achieving adequate translation quality and accuracy. This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized specifically for medical texts. While large language models (LLMs) have demonstrated powerful capabilities, this research shows that small, specialized models trained on high-quality in-domain (mostly synthetic) data can outperform even vastly larger LLMs. Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts. Our LLMs-in-the-loop methodology employs synthetic data generation, rigorous evaluation, and agent orchestration to enhance performance. We developed small medical translation models using the MarianMT base model. We introduce a new medical translation test dataset to standardize evaluation in this domain. Assessed using BLEU, METEOR, ROUGE, and BERT scores on this test set, our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo. Results demonstrate that our LLMs-in-the-loop approach, combined with fine-tuning high-quality, domain-specific data, enables specialized models to outperform general-purpose and some larger systems. This research, part of a broader series on expert small models, paves the way for future healthcare-related AI developments, including deidentification and bio-medical entity extraction models. Our study underscores the potential of tailored neural translation models and the LLMs-in-the-loop methodology to advance the field through improved data generation, evaluation, agent, and modeling techniques.
Related papers
- Instruction-tuned Large Language Models for Machine Translation in the Medical Domain [1.0152838128195465]
Large Language Models (LLMs) have shown promising results on machine translation for high resource language pairs and domains.
In this study, we compare the performance between baseline LLMs and instruction-tuned LLMs in the medical domain.
arXiv Detail & Related papers (2024-08-29T11:05:54Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains [8.448541067852]
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years.
Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.
We introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model.
arXiv Detail & Related papers (2024-02-15T23:39:04Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Local Large Language Models for Complex Structured Medical Tasks [0.0]
This paper introduces an approach that combines the language reasoning capabilities of large language models with the benefits of local training to tackle complex, domain-specific tasks.
Specifically, the authors demonstrate their approach by extracting structured condition codes from pathology reports.
arXiv Detail & Related papers (2023-08-03T12:36:13Z) - UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for
Biomedical Entity Recognition [4.865221751784403]
This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS.
Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks.
arXiv Detail & Related papers (2023-07-20T18:08:34Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs)
This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models.
arXiv Detail & Related papers (2023-03-15T12:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.