Topological zero modes and bounded modes at smooth domain walls: Exact solutions and dualities
- URL: http://arxiv.org/abs/2408.16466v4
- Date: Mon, 17 Feb 2025 03:31:22 GMT
- Title: Topological zero modes and bounded modes at smooth domain walls: Exact solutions and dualities
- Authors: Pasquale Marra, Angela Nigro,
- Abstract summary: Topology mandates the existence of solitonic zero-energy modes at the domain walls between topologically inequivalent phases in topological insulators and superconductors.<n>Here, we find the analytical solutions of these zero-modes by assuming a smooth and exponentially-confined domain wall.<n>We establish a universal relation between the bulk excitation gap, decay rate, and oscillation momentum of the zero modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology describes global quantities invariant under continuous deformations, such as the number of elementary excitations at a phase boundary, without detailing specifics. Conversely, differential laws are needed to understand the physical properties of these excitations, such as their localization and spatial behavior. For instance, topology mandates the existence of solitonic zero-energy modes at the domain walls between topologically inequivalent phases in topological insulators and superconductors. However, the spatial dependence of these modes is only known in the idealized (and unrealistic) case of a sharp domain wall. Here, we find the analytical solutions of these zero-modes by assuming a smooth and exponentially-confined domain wall. This allows us to characterize the zero-modes using a few length scales: the domain wall width, the exponential decay length, and oscillation wavelength. These quantities define distinct regimes: featureless modes with "no hair" at sharp domain walls, and nonfeatureless modes at smooth domain walls, respectively, with "short hair", i.e., featureless at long distances, and "long hair", i.e., nonfeatureless at all length scales. We thus establish a universal relation between the bulk excitation gap, decay rate, and oscillation momentum of the zero modes, which quantifies the bulk-boundary correspondence in terms of experimentally measurable physical quantities. Additionally, we reveal an unexpected duality between topological zero modes and Shockley modes, unifying the understanding of topologically-protected and nontopological boundary modes. These findings shed some new light on the localization properties of edge modes in topological insulators and Majorana zero modes in topological superconductors and on the differences and similarities between topological and nontopological zero modes in these systems.
Related papers
- Nonlinearity-driven Topology via Spontaneous Symmetry Breaking [79.16635054977068]
We consider a chain of parametrically-driven quantum resonators coupled only via weak nearest-neighbour cross-Kerr interaction.
Topology is dictated by the structure of the Kerr nonlinearity, yielding a non-trivial bulk-boundary correspondence.
arXiv Detail & Related papers (2025-03-15T00:20:45Z) - Zero energy modes with Gaussian, exponential, or polynomial decay: Exact solutions in hermitian and nonhermitian regimes [0.0]
We classify and understand topological and nontopological modes in topological insulators and superconductors.
These findings allow us to classify and understand topological and nontopological modes in topological insulators and superconductors.
arXiv Detail & Related papers (2024-12-18T19:00:04Z) - Quasi-Majorana modes in the $p$-wave Kitaev chains on a square lattice [14.37149160708975]
The Kitaev chains on a square lattice with nearest-neighbor and next-nearest-neighbor inter-chains hopping and pairing are investigated.
This model exhibits topological gapless phase hosting edge modes, which do not reside strictly at zero energy.
The emergence of topological edge states and Dirac points with zero Chern number indicates that this model is a weak topological superconductor.
arXiv Detail & Related papers (2024-10-07T11:54:51Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Isolated zero mode in a quantum computer from a duality twist [0.0]
We investigate the interplay of dualities, generalized symmetries, and topological defects beyond theoretical models.
A simple model exhibiting this physics is the transverse-field Ising model, which can host atopological defect.
When acting on one point in space, this duality defect imposes the duality twisted boundary condition and a single zero mode.
arXiv Detail & Related papers (2023-08-04T15:31:07Z) - Wiener-Hopf factorization approach to a bulk-boundary correspondence and
stability conditions for topological zero-energy modes [0.0]
We show that the Wiener-Hopf factorization is a natural tool to investigate bulk-boundary correspondence in quasi-one-dimensional fermionic symmetry-protected topological phases.
Our results are especially valuable for applications, including Majorana-based topological quantum computing.
arXiv Detail & Related papers (2023-04-07T07:40:10Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Chiral metals and entrapped insulators in a one-dimensional topological
non-Hermitian system [4.3012765978447565]
We study many-body'steady states' that arise in the non-Hermitian generalisation of the non-interacting Su-Schrieffer-Heeger model at a finite density of fermions.
arXiv Detail & Related papers (2021-11-03T13:42:18Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.