Quasi-Majorana modes in the $p$-wave Kitaev chains on a square lattice
- URL: http://arxiv.org/abs/2410.04955v1
- Date: Mon, 7 Oct 2024 11:54:51 GMT
- Title: Quasi-Majorana modes in the $p$-wave Kitaev chains on a square lattice
- Authors: S. Srinidhi, Aayushi Agrawal, Jayendra N. Bandyopadhyay,
- Abstract summary: The Kitaev chains on a square lattice with nearest-neighbor and next-nearest-neighbor inter-chains hopping and pairing are investigated.
This model exhibits topological gapless phase hosting edge modes, which do not reside strictly at zero energy.
The emergence of topological edge states and Dirac points with zero Chern number indicates that this model is a weak topological superconductor.
- Score: 14.37149160708975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The topological characteristics of the $p$-wave Kitaev chains on a square lattice with nearest-neighbor and next-nearest-neighbor inter-chains hopping and pairing are investigated. Besides gapless exact zero-energy modes, this model exhibits topological gapless phase hosting edge modes, which do not reside strictly at zero energy. However, these modes can be distinguished from the bulk states. These states are known as pseudo- or quasi-Majorana Modes (qMMs). The exploration of this system's bulk spectrum and Berry curvature reveals singularities and flux-carrying vortices within its Brillouin zone. These vortices indicate the presence of four-fold Dirac points arising from two-fold degenerate bands. Examining the Hamiltonian under a cylindrical geometry uncovers the edge properties, demonstrating the existence of topological edge modes. These modes are a direct topological consequence of the Dirac semimetal characteristics of the system. The system is analyzed under open boundary conditions to distinguish the multiple MZMs and qMMs. This analysis includes a study of the normalized site-dependent local density of states, which pinpoints the presence of localized edge states. Additionally, numerical evidence confirms the robustness of the edge modes against disorder perturbations. The emergence of topological edge states and Dirac points with zero Chern number indicates that this model is a weak topological superconductor.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Chiral symmetry breaking and topological charge of graphene nanoribbons [0.0]
We explore the edge zigzag properties of rectangular graphene nanoribbons featuring two edges and two armchair edges.
Although the self-consistent Hartree-Fock fields break chiral symmetry, our work demonstrates that graphene nanoribbons maintain their status as short-range entangled symmetry-protected topological insulators.
arXiv Detail & Related papers (2023-12-09T07:32:50Z) - Topological properties of a non-Hermitian quasi-1D chain with a flat
band [0.0]
spectral properties of a non-Hermitian quasi-1D lattice in two of the possible dimerization configurations are investigated.
Non-Hermitian diamond chain that presents a zero-energy flat band.
Non-Hermitian diamond chains can be mapped into two models of the Su-Schrieffer-Heeger chains, either non-Hermitian, and Hermitian, both in the presence of a flat band.
arXiv Detail & Related papers (2023-07-17T18:00:47Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Selective and tunable excitation of topological non-Hermitian skin modes [0.0]
Non-Hermitian lattices sustain an extensive number of exponentially-localized states, dubbed non-Hermitian skin modes.
Such states can be predicted from the nontrivial topology of the energy spectrum under periodic boundary conditions.
In any realistic system with a finite lattice size most of skin edge states collapse and become metastable states.
arXiv Detail & Related papers (2021-12-09T15:32:39Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Non-Hermitian Pseudo-Gaps [3.787008621816909]
A new non-Hermitian mechanism induces pseudo-gaps when boundaries are introduced in a lattice.
A non-Hermitian pseudo-gap can host symmetry-protected mid-gap modes like ordinary topological gaps.
Surprisingly, pseudo-gaps can also host an integer number of edge modes.
arXiv Detail & Related papers (2021-06-06T00:39:49Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.