論文の概要: On-device AI: Quantization-aware Training of Transformers in Time-Series
- arxiv url: http://arxiv.org/abs/2408.16495v1
- Date: Thu, 29 Aug 2024 12:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:52:39.996217
- Title: On-device AI: Quantization-aware Training of Transformers in Time-Series
- Title(参考訳): オンデバイスAI: 時系列におけるトランスフォーマーの量子化対応トレーニング
- Authors: Tianheng Ling, Gregor Schiele,
- Abstract要約: Transformerモデルは、これらのAIモデルの中で最も魅力的だ。
私の研究は、時系列予測タスクのためのTransformerモデルを最適化することに焦点を当てています。
最適化されたモデルは、組み込みフィールドプログラマブルゲートアレイ(FPGA)上にハードウェアアクセラレータとしてデプロイされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) models for time-series in pervasive computing keep getting larger and more complicated. The Transformer model is by far the most compelling of these AI models. However, it is difficult to obtain the desired performance when deploying such a massive model on a sensor device with limited resources. My research focuses on optimizing the Transformer model for time-series forecasting tasks. The optimized model will be deployed as hardware accelerators on embedded Field Programmable Gate Arrays (FPGAs). I will investigate the impact of applying Quantization-aware Training to the Transformer model to reduce its size and runtime memory footprint while maximizing the advantages of FPGAs.
- Abstract(参考訳): 広範コンピューティングにおける時系列の人工知能(AI)モデルは、ますます大きく、より複雑になってきている。
Transformerモデルは、これらのAIモデルの中で最も魅力的だ。
しかし、そのような大規模なモデルを限られた資源を持つセンサデバイスに展開する際には、所望の性能を得るのは難しい。
私の研究は、時系列予測タスクのためのTransformerモデルを最適化することに焦点を当てています。
最適化されたモデルは、組み込みフィールドプログラマブルゲートアレイ(FPGA)上にハードウェアアクセラレータとしてデプロイされる。
FPGAの利点を最大化しつつ、そのサイズと実行時のメモリフットプリントを削減するために、Transformerモデルに量子化対応トレーニングを適用することの影響について検討する。
関連論文リスト
- Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - Fourier Transformer: Fast Long Range Modeling by Removing Sequence
Redundancy with FFT Operator [24.690247474891958]
フーリエ変換器は、様々な大きな事前訓練されたモデルから継承する能力を維持しながら、計算コストを大幅に削減することができる。
本モデルは,長距離モデリングベンチマークLRAにおいて,トランスフォーマーベースモデル間の最先端性能を実現する。
CNN/DailyMailやELI5などのシークエンシャルなシークエンスタスクでは、BARTを継承することで、私たちのモデルは標準のBARTよりも優れています。
論文 参考訳(メタデータ) (2023-05-24T12:33:06Z) - TransCODE: Co-design of Transformers and Accelerators for Efficient
Training and Inference [6.0093441900032465]
本稿では,アクセラレータの設計空間におけるトランスフォーマー推論とトレーニングをシミュレートするフレームワークを提案する。
我々はこのシミュレータとTransCODEと呼ばれる共同設計手法を併用して最適性能のモデルを得る。
得られた変圧器・加速器対は、最先端の対よりも0.3%高い精度を達成する。
論文 参考訳(メタデータ) (2023-03-27T02:45:18Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
本稿ではトランスフォーマーアクセラレーションのためのコヒーレントシーケンス長適応型アルゴリズム-ハードウェア共設計を提案する。
ハードウェアフレンドリーなスパースアテンション演算子と長編ハードウェアリソーススケジューリングアルゴリズムを開発した。
我々の設計は、非常に小さな精度の損失があり、CPUやGPUの実装と比較して80.2$times$と2.6$times$ Speedupがある。
論文 参考訳(メタデータ) (2022-08-07T05:48:38Z) - Transformer Acceleration with Dynamic Sparse Attention [20.758709319088865]
本稿では,トランスフォーマーの注意における動的間隔を効果的に活用する動的スパース注意(DSA)を提案する。
われわれのアプローチは、精度とモデルの複雑さのトレードオフを改善することができる。
論文 参考訳(メタデータ) (2021-10-21T17:31:57Z) - Space-time Mixing Attention for Video Transformer [55.50839896863275]
本稿では,ビデオシーケンス内のフレーム数と線形にスケールする複雑性をビデオトランスフォーマーモデルとして提案する。
我々は,最も人気のあるビデオ認識データセットに対して,認識精度が非常に高いことを実証した。
論文 参考訳(メタデータ) (2021-06-10T17:59:14Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
我々は視覚に優しいトランスフォーマーから短縮したvisformerという新しいアーキテクチャを提案する。
同じ計算の複雑さにより、VisformerはTransformerベースのモデルとConvolutionベースのモデルの両方をImageNet分類精度で上回る。
論文 参考訳(メタデータ) (2021-04-26T13:13:03Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
本研究はトランスフォーマーモデルにおける高効率事前学習目標について検討する。
マスクトークンの除去と損失時のアウトプット全体の考慮が,パフォーマンス向上に不可欠な選択であることを証明する。
論文 参考訳(メタデータ) (2021-04-20T00:09:37Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
本研究では,計算によって制限されたNLPタスクのトランスフォーマーモデルに着目し,モデルサイズの影響について検討する。
まず最初に、より小さなTransformerモデルがイテレーション毎に高速に実行されているにもかかわらず、より広いモデルとより深いモデルがはるかに少ないステップで収束していることを示します。
これは、大きなTransformerモデルのトレーニング効率と小さなTransformerモデルの推論効率との間に明らかなトレードオフをもたらす。
論文 参考訳(メタデータ) (2020-02-26T21:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。