A Comprehensive Review of 3D Object Detection in Autonomous Driving: Technological Advances and Future Directions
- URL: http://arxiv.org/abs/2408.16530v1
- Date: Wed, 28 Aug 2024 01:08:33 GMT
- Title: A Comprehensive Review of 3D Object Detection in Autonomous Driving: Technological Advances and Future Directions
- Authors: Yu Wang, Shaohua Wang, Yicheng Li, Mingchun Liu,
- Abstract summary: 3D object perception has become a crucial component in the development of autonomous driving systems.
This review extensively summarizes traditional 3D object detection methods, focusing on camera-based, LiDAR-based, and fusion detection techniques.
We discuss future directions, including methods to improve accuracy such as temporal perception, occupancy grids, and end-to-end learning frameworks.
- Score: 11.071271817366739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, 3D object perception has become a crucial component in the development of autonomous driving systems, providing essential environmental awareness. However, as perception tasks in autonomous driving evolve, their variants have increased, leading to diverse insights from industry and academia. Currently, there is a lack of comprehensive surveys that collect and summarize these perception tasks and their developments from a broader perspective. This review extensively summarizes traditional 3D object detection methods, focusing on camera-based, LiDAR-based, and fusion detection techniques. We provide a comprehensive analysis of the strengths and limitations of each approach, highlighting advancements in accuracy and robustness. Furthermore, we discuss future directions, including methods to improve accuracy such as temporal perception, occupancy grids, and end-to-end learning frameworks. We also explore cooperative perception methods that extend the perception range through collaborative communication. By providing a holistic view of the current state and future developments in 3D object perception, we aim to offer a more comprehensive understanding of perception tasks for autonomous driving. Additionally, we have established an active repository to provide continuous updates on the latest advancements in this field, accessible at: https://github.com/Fishsoup0/Autonomous-Driving-Perception.
Related papers
- A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective [20.798308029074786]
3D occupancy perception technology aims to observe and understand dense 3D environments for autonomous vehicles.
Similar to traditional bird's-eye view (BEV) perception, 3D occupancy perception has the nature of multi-source input and the necessity for information fusion.
arXiv Detail & Related papers (2024-05-08T16:10:46Z) - Vision-based 3D occupancy prediction in autonomous driving: a review and outlook [19.939380586314673]
We introduce the background of vision-based 3D occupancy prediction and discuss the challenges in this task.
We conduct a comprehensive survey of the progress in vision-based 3D occupancy prediction from three aspects.
We present a summary of prevailing research trends and propose some inspiring future outlooks.
arXiv Detail & Related papers (2024-05-04T07:39:25Z) - Monocular 3D lane detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks [10.780826266192621]
3D lane detection is essential in autonomous driving as it extracts structural and traffic information from the road in three-dimensional space.
Recent advancements in visual perception seem inadequate for the development of fully reliable 3D lane detection algorithms.
This review looks back and analyzes the current state of achievements in the field of 3D lane detection research.
arXiv Detail & Related papers (2024-04-10T09:35:50Z) - 3D Object Visibility Prediction in Autonomous Driving [6.802572869909114]
We present a novel attribute and its corresponding algorithm: 3D object visibility.
Our proposal of this attribute and its computational strategy aims to expand the capabilities for downstream tasks.
arXiv Detail & Related papers (2024-03-06T13:07:42Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
3D object detection, which intelligently predicts the locations, sizes, and categories of the critical 3D objects near an autonomous vehicle, is an important part of a perception system.
This paper reviews the advances in 3D object detection for autonomous driving.
arXiv Detail & Related papers (2022-06-19T19:43:11Z) - 3D Object Detection from Images for Autonomous Driving: A Survey [68.33502122185813]
3D object detection from images is one of the fundamental and challenging problems in autonomous driving.
More than 200 works have studied this problem from 2015 to 2021, encompassing a broad spectrum of theories, algorithms, and applications.
We provide the first comprehensive survey of this novel and continuously growing research field, summarizing the most commonly used pipelines for image-based 3D detection.
arXiv Detail & Related papers (2022-02-07T07:12:24Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.