A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective
- URL: http://arxiv.org/abs/2405.05173v3
- Date: Sun, 21 Jul 2024 12:01:28 GMT
- Title: A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective
- Authors: Huaiyuan Xu, Junliang Chen, Shiyu Meng, Yi Wang, Lap-Pui Chau,
- Abstract summary: 3D occupancy perception technology aims to observe and understand dense 3D environments for autonomous vehicles.
Similar to traditional bird's-eye view (BEV) perception, 3D occupancy perception has the nature of multi-source input and the necessity for information fusion.
- Score: 20.798308029074786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D occupancy perception technology aims to observe and understand dense 3D environments for autonomous vehicles. Owing to its comprehensive perception capability, this technology is emerging as a trend in autonomous driving perception systems, and is attracting significant attention from both industry and academia. Similar to traditional bird's-eye view (BEV) perception, 3D occupancy perception has the nature of multi-source input and the necessity for information fusion. However, the difference is that it captures vertical structures that are ignored by 2D BEV. In this survey, we review the most recent works on 3D occupancy perception, and provide in-depth analyses of methodologies with various input modalities. Specifically, we summarize general network pipelines, highlight information fusion techniques, and discuss effective network training. We evaluate and analyze the occupancy perception performance of the state-of-the-art on the most popular datasets. Furthermore, challenges and future research directions are discussed. We hope this paper will inspire the community and encourage more research work on 3D occupancy perception. A comprehensive list of studies in this survey is publicly available in an active repository that continuously collects the latest work: https://github.com/HuaiyuanXu/3D-Occupancy-Perception.
Related papers
- A Comprehensive Review of 3D Object Detection in Autonomous Driving: Technological Advances and Future Directions [11.071271817366739]
3D object perception has become a crucial component in the development of autonomous driving systems.
This review extensively summarizes traditional 3D object detection methods, focusing on camera-based, LiDAR-based, and fusion detection techniques.
We discuss future directions, including methods to improve accuracy such as temporal perception, occupancy grids, and end-to-end learning frameworks.
arXiv Detail & Related papers (2024-08-28T01:08:33Z) - Vision-based 3D occupancy prediction in autonomous driving: a review and outlook [19.939380586314673]
We introduce the background of vision-based 3D occupancy prediction and discuss the challenges in this task.
We conduct a comprehensive survey of the progress in vision-based 3D occupancy prediction from three aspects.
We present a summary of prevailing research trends and propose some inspiring future outlooks.
arXiv Detail & Related papers (2024-05-04T07:39:25Z) - Surround-View Vision-based 3D Detection for Autonomous Driving: A Survey [0.6091702876917281]
We provide a literature survey for the existing Vision Based 3D detection methods, focused on autonomous driving.
We have highlighted how the literature and industry trend have moved towards surround-view image based methods and note down thoughts on what special cases this method addresses.
arXiv Detail & Related papers (2023-02-13T19:30:17Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
3D object detection, which intelligently predicts the locations, sizes, and categories of the critical 3D objects near an autonomous vehicle, is an important part of a perception system.
This paper reviews the advances in 3D object detection for autonomous driving.
arXiv Detail & Related papers (2022-06-19T19:43:11Z) - 3D Object Detection from Images for Autonomous Driving: A Survey [68.33502122185813]
3D object detection from images is one of the fundamental and challenging problems in autonomous driving.
More than 200 works have studied this problem from 2015 to 2021, encompassing a broad spectrum of theories, algorithms, and applications.
We provide the first comprehensive survey of this novel and continuously growing research field, summarizing the most commonly used pipelines for image-based 3D detection.
arXiv Detail & Related papers (2022-02-07T07:12:24Z) - KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding
in 2D and 3D [67.50776195828242]
KITTI-360 is a suburban driving dataset which comprises richer input modalities, comprehensive semantic instance annotations and accurate localization.
For efficient annotation, we created a tool to label 3D scenes with bounding primitives, resulting in over 150k semantic and instance annotated images and 1B annotated 3D points.
We established benchmarks and baselines for several tasks relevant to mobile perception, encompassing problems from computer vision, graphics, and robotics on the same dataset.
arXiv Detail & Related papers (2021-09-28T00:41:29Z) - 3D Object Detection for Autonomous Driving: A Survey [14.772968858398043]
3D object detection serves as the core basis of such perception system.
Despite existing efforts, 3D object detection on point clouds is still in its infancy.
Recent state-of-the-art detection methods with their pros and cons are presented.
arXiv Detail & Related papers (2021-06-21T03:17:20Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.