論文の概要: An Adaptive Latent Factorization of Tensors Model for Embedding Dynamic Communication Network
- arxiv url: http://arxiv.org/abs/2408.16573v1
- Date: Thu, 29 Aug 2024 14:40:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:33:01.476484
- Title: An Adaptive Latent Factorization of Tensors Model for Embedding Dynamic Communication Network
- Title(参考訳): 動的通信ネットワークの埋め込みのためのテンソルモデルの適応的潜在因子化
- Authors: Xin Liao, Qicong Hu, Peng Tang,
- Abstract要約: Dynamic Communication Network (DCN) は、様々な通信ノード間の時間的相互作用を記述する。
本稿では,適応時間依存型低ランク表現モデル(ATT)を提案する。
実世界のDCN4つの実験結果から,提案したATTモデルは予測誤差と収束ラウンドの両方において,最先端のモデルを著しく上回っていることが示された。
- 参考スコア(独自算出の注目度): 15.577058568902272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Dynamic Communication Network (DCN) describes the interactions over time among various communication nodes, and it is widely used in Big-data applications as a data source. As the number of communication nodes increases and temporal slots accumulate, each node interacts in with only a few nodes in a given temporal slot, the DCN can be represented by an High-Dimensional Sparse (HDS) tensor. In order to extract rich behavioral patterns from an HDS tensor in DCN, this paper proposes an Adaptive Temporal-dependent Tensor low-rank representation (ATT) model. It adopts a three-fold approach: a) designing a temporal-dependent method to reconstruct temporal feature matrix, thereby precisely represent the data by capturing the temporal patterns; b) achieving hyper-parameters adaptation of the model via the Differential Evolutionary Algorithms (DEA) to avoid tedious hyper-parameters tuning; c) employing nonnegative learning schemes for the model parameters to effectively handle an the nonnegativity inherent in HDS data. The experimental results on four real-world DCNs demonstrate that the proposed ATT model significantly outperforms several state-of-the-art models in both prediction errors and convergence rounds.
- Abstract(参考訳): Dynamic Communication Network (DCN)は、様々な通信ノード間の時間的相互作用を記述し、ビッグデータアプリケーションにおいてデータソースとして広く使われている。
通信ノードの数が増えて時間スロットが蓄積されるにつれて、各ノードは与えられた時間スロット内の少数のノードとのみ相互作用し、DCNは高次元スパーステンソル(HDS)で表される。
本稿では,DCNのHDSテンソルからリッチな動作パターンを抽出するために,適応的テンソル依存テンソル低ランク表現(ATT)モデルを提案する。
3倍のアプローチを採用しています。
イ 時相的特徴行列を再構築するための時相依存的手法を設計し、したがって、時相的パターンを捉えてデータを正確に表現すること。
ロ 退屈な過度パラメータ調整を避けるため、差分進化アルゴリズム(DEA)を介してモデルの過度パラメータ適応を達成すること。
c) モデルパラメータに対して非負の学習スキームを用いて、HDSデータに固有の非負性を扱う。
実世界のDCN4つの実験結果から,提案したATTモデルは,予測誤差と収束ラウンドの両方において,最先端のモデルを著しく上回っていることが示された。
関連論文リスト
- Zero-Shot Temporal Resolution Domain Adaptation for Spiking Neural Networks [3.2366933261812076]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたディープニューラルネットワークであり、時間的情報を効率的に抽出する。
SNNモデルパラメータは時間分解能に敏感であり、エッジでのターゲットデータの時間分解能が同じでない場合、大幅な性能低下を引き起こす。
本稿では,ニューロンパラメータを適応させる3つの新しい領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T14:58:51Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - A Momentum-Incorporated Non-Negative Latent Factorization of Tensors
Model for Dynamic Network Representation [0.0]
大規模動的ネットワーク (LDN) は、多くのビッグデータ関連アプリケーションにおけるデータソースである。
テンソル(LFT)モデルの潜在因子化は、この時間パターンを効率的に抽出する。
勾配降下(SGD)解法に基づくLFTモデルは、トレーニングスキームによって制限されることが多く、尾収束が弱い。
本稿では,運動量付きSGDに基づく非線形LFTモデル(MNNL)を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:30:53Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Utterance Weighted Multi-Dilation Temporal Convolutional Networks for
Monaural Speech Dereverberation [26.94528951545861]
時間的畳み込みネットワーク(TCN)における標準深度分割畳み込みを置き換えるため、重み付き多重ディレーション深度分離畳み込みを提案する。
この重み付き多重拡散時間畳み込みネットワーク(WD-TCN)は、様々なモデル構成において、TCNを一貫して上回っている。
論文 参考訳(メタデータ) (2022-05-17T15:56:31Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
本稿では,散発データにおける複数の時間的特徴をモデル化するための新しい深層学習モデルを提案する。
提案モデルはCARRNNと呼ばれ、時間ラグによって変調されたニューラルネットワークを用いてエンドツーエンドにトレーニング可能な一般化された離散時間自己回帰モデルを使用する。
アルツハイマー病進行モデルおよび集中治療単位(ICU)死亡率予測のためのデータを用いて,多変量時系列回帰タスクに適用した。
論文 参考訳(メタデータ) (2021-04-08T12:43:44Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Temporal Graph Modeling for Skeleton-based Action Recognition [25.788239844759246]
複雑な時間的ダイナミクスを捉えるための時間拡張グラフ畳み込みネットワーク(TE-GCN)を提案する。
構築された時間関係グラフは、意味的に関連する時間的特徴間の接続を明示的に構築する。
2つの大規模データセットで実験を行う。
論文 参考訳(メタデータ) (2020-12-16T09:02:47Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。