sEMG-Driven Physics-Informed Gated Recurrent Networks for Modeling Upper Limb Multi-Joint Movement Dynamics
- URL: http://arxiv.org/abs/2408.16599v2
- Date: Mon, 17 Feb 2025 11:20:46 GMT
- Title: sEMG-Driven Physics-Informed Gated Recurrent Networks for Modeling Upper Limb Multi-Joint Movement Dynamics
- Authors: Rajnish Kumar, Anand Gupta, Suriya Prakash Muthukrishnan, Lalan Kumar, Sitikantha Roy,
- Abstract summary: Exoskeletons and rehabilitation systems have the potential to improve human strength and recovery by using adaptive human-machine interfaces.
We introduce the Physics-informed Gated Recurrent Network (PiGRN), a novel model designed to predict multi-joint movement dynamics from sEMG data.
PiGRN uses a Gated Recurrent Unit (GRU) to process time-series sEMG inputs, estimate multi-joint kinematics and external loads, and predict joint torque while incorporating physics-based constraints during training.
- Score: 5.524068837259551
- License:
- Abstract: Exoskeletons and rehabilitation systems have the potential to improve human strength and recovery by using adaptive human-machine interfaces. Achieving precise and responsive control in these systems depends on accurately estimating joint movement dynamics, such as joint angle, velocity, acceleration, external mass, and torque. While machine learning (ML) approaches have been employed to predict joint kinematics from surface electromyography (sEMG) data, traditional ML models often struggle to generalize across dynamic movements. In contrast, physics-informed neural networks integrate biomechanical principles, but their effectiveness in predicting full movement dynamics has not been thoroughly explored. To address this, we introduce the Physics-informed Gated Recurrent Network (PiGRN), a novel model designed to predict multi-joint movement dynamics from sEMG data. PiGRN uses a Gated Recurrent Unit (GRU) to process time-series sEMG inputs, estimate multi-joint kinematics and external loads, and predict joint torque while incorporating physics-based constraints during training. Experimental validation, using sEMG data from five participants performing elbow flexion-extension tasks with 0 kg, 2 kg, and 4 kg loads, showed that PiGRN accurately predicted joint torques for 10 novel movements. RMSE values ranged from 4.02\% to 11.40\%, with correlation coefficients between 0.87 and 0.98. These results underscore PiGRN's potential for real-time applications in exoskeletons and rehabilitation. Future work will focus on expanding datasets, improving musculoskeletal models, and investigating unsupervised learning approaches.
Related papers
- Deep Learning for Motion Classification in Ankle Exoskeletons Using Surface EMG and IMU Signals [0.8388591755871735]
Ankle exoskeletons have garnered considerable interest for their potential to enhance mobility and reduce fall risks.
This paper presents a novel motion prediction framework that integrates three Inertial Measurement Units (IMUs) and eight surface Electromyography (sEMG) sensors.
Our findings reveal that Convolutional Neural Networks (CNNs) slightly outperform Long Short-Term Memory (LSTM) networks on a dataset of five motion tasks.
arXiv Detail & Related papers (2024-11-25T10:51:40Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals
Across Varied Loads with a Physics-Informed Neural Network [0.0]
The PINN model is constructed by combining a feed-forward Artificial Neural Network (ANN) with a joint torque model.
The training dataset for the PINN model comprises EMG and time data collected from four different subjects.
The results demonstrated strong correlations of 58% to 83% in joint angle prediction.
arXiv Detail & Related papers (2023-11-28T16:55:11Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
Muscle force and joint kinematics estimation from surface electromyography (sEMG) are essential for real-time biomechanical analysis.
Recent advances in deep neural networks (DNNs) have shown the potential to improve biomechanical analysis in a fully automated and reproducible manner.
This paper presents a novel physics-informed low-shot learning method for sEMG-based estimation of muscle force and joint kinematics.
arXiv Detail & Related papers (2023-07-08T23:01:12Z) - A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems [1.978587235008588]
This work presents a physics-informed recurrent neural network (MR PI-RNN) for simultaneous prediction of musculoskeletal (MSK) motion.
The proposed method utilizes the fast wavelet transform to decompose the mixed frequency input sEMG and output joint motion signals into nested multi-resolution signals.
The framework is also capable of identifying muscle parameters that are physiologically consistent with the subject's kinematics data.
arXiv Detail & Related papers (2023-05-26T02:51:39Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.