A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics
- URL: http://arxiv.org/abs/2307.05361v1
- Date: Sat, 8 Jul 2023 23:01:12 GMT
- Title: A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics
- Authors: Yue Shi, Shuhao Ma, Yihui Zhao, Zhiqiang Zhang
- Abstract summary: Muscle force and joint kinematics estimation from surface electromyography (sEMG) are essential for real-time biomechanical analysis.
Recent advances in deep neural networks (DNNs) have shown the potential to improve biomechanical analysis in a fully automated and reproducible manner.
This paper presents a novel physics-informed low-shot learning method for sEMG-based estimation of muscle force and joint kinematics.
- Score: 4.878073267556235
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Muscle force and joint kinematics estimation from surface electromyography
(sEMG) are essential for real-time biomechanical analysis of the dynamic
interplay among neural muscle stimulation, muscle dynamics, and kinetics.
Recent advances in deep neural networks (DNNs) have shown the potential to
improve biomechanical analysis in a fully automated and reproducible manner.
However, the small sample nature and physical interpretability of biomechanical
analysis limit the applications of DNNs. This paper presents a novel
physics-informed low-shot learning method for sEMG-based estimation of muscle
force and joint kinematics. This method seamlessly integrates Lagrange's
equation of motion and inverse dynamic muscle model into the generative
adversarial network (GAN) framework for structured feature decoding and
extrapolated estimation from the small sample data. Specifically, Lagrange's
equation of motion is introduced into the generative model to restrain the
structured decoding of the high-level features following the laws of physics.
And a physics-informed policy gradient is designed to improve the adversarial
learning efficiency by rewarding the consistent physical representation of the
extrapolated estimations and the physical references. Experimental validations
are conducted on two scenarios (i.e. the walking trials and wrist motion
trials). Results indicate that the estimations of the muscle forces and joint
kinematics are unbiased compared to the physics-based inverse dynamics, which
outperforms the selected benchmark methods, including physics-informed
convolution neural network (PI-CNN), vallina generative adversarial network
(GAN), and multi-layer extreme learning machine (ML-ELM).
Related papers
- Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections.
We also propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images.
arXiv Detail & Related papers (2024-10-10T17:43:36Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals
Across Varied Loads with a Physics-Informed Neural Network [0.0]
The PINN model is constructed by combining a feed-forward Artificial Neural Network (ANN) with a joint torque model.
The training dataset for the PINN model comprises EMG and time data collected from four different subjects.
The results demonstrated strong correlations of 58% to 83% in joint angle prediction.
arXiv Detail & Related papers (2023-11-28T16:55:11Z) - The bionic neural network for external simulation of human locomotor
system [2.6311880922890842]
This paper proposes a physics-informed deep learning method based on musculoskeletal (MSK) modeling to predict joint motion and muscle forces.
The method can effectively identify subject-specific MSK physiological parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion and muscle forces predictions.
arXiv Detail & Related papers (2023-09-11T23:02:56Z) - A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems [1.978587235008588]
This work presents a physics-informed recurrent neural network (MR PI-RNN) for simultaneous prediction of musculoskeletal (MSK) motion.
The proposed method utilizes the fast wavelet transform to decompose the mixed frequency input sEMG and output joint motion signals into nested multi-resolution signals.
The framework is also capable of identifying muscle parameters that are physiologically consistent with the subject's kinematics data.
arXiv Detail & Related papers (2023-05-26T02:51:39Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Learning to Simulate Unseen Physical Systems with Graph Neural Networks [13.202870928432045]
"Graph-based Physics Engine" is a machine learning method embedded with physical priors and material parameters.
We demonstrate that GPE can generalize to materials with different properties not seen in the training set.
In addition, introducing the law of momentum conservation in the model significantly improves the efficiency and stability of learning.
arXiv Detail & Related papers (2022-01-28T07:56:46Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.