Subspace Representation Learning for Sparse Linear Arrays to Localize More Sources than Sensors: A Deep Learning Methodology
- URL: http://arxiv.org/abs/2408.16605v1
- Date: Thu, 29 Aug 2024 15:14:52 GMT
- Title: Subspace Representation Learning for Sparse Linear Arrays to Localize More Sources than Sensors: A Deep Learning Methodology
- Authors: Kuan-Lin Chen, Bhaskar D. Rao,
- Abstract summary: We develop a novel methodology that estimates the co-array subspaces from a sample covariance for sparse linear array (SLA)
To learn such representations, we propose loss functions that gauge the separation between the desired and the estimated subspace.
The computation of learning subspaces of different dimensions is accelerated by a new batch sampling strategy.
- Score: 19.100476521802243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Localizing more sources than sensors with a sparse linear array (SLA) has long relied on minimizing a distance between two covariance matrices and recent algorithms often utilize semidefinite programming (SDP). Although deep neural network (DNN)-based methods offer new alternatives, they still depend on covariance matrix fitting. In this paper, we develop a novel methodology that estimates the co-array subspaces from a sample covariance for SLAs. Our methodology trains a DNN to learn signal and noise subspace representations that are invariant to the selection of bases. To learn such representations, we propose loss functions that gauge the separation between the desired and the estimated subspace. In particular, we propose losses that measure the length of the shortest path between subspaces viewed on a union of Grassmannians, and prove that it is possible for a DNN to approximate signal subspaces. The computation of learning subspaces of different dimensions is accelerated by a new batch sampling strategy called consistent rank sampling. The methodology is robust to array imperfections due to its geometry-agnostic and data-driven nature. In addition, we propose a fully end-to-end gridless approach that directly learns angles to study the possibility of bypassing subspace methods. Numerical results show that learning such subspace representations is more beneficial than learning covariances or angles. It outperforms conventional SDP-based methods such as the sparse and parametric approach (SPA) and existing DNN-based covariance reconstruction methods for a wide range of signal-to-noise ratios (SNRs), snapshots, and source numbers for both perfect and imperfect arrays.
Related papers
- SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation [36.647703652676626]
SubspaceNet is a data-driven DoA estimator which learns how to divide the observations into distinguishable subspaces.
SubspaceNet is shown to enable various DoA estimation algorithms to cope with coherent sources, wideband signals, low SNR, array mismatches, and limited snapshots.
arXiv Detail & Related papers (2023-06-04T06:30:13Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications.
We propose a novel training pipeline to address the mode collapse issue of GANs.
arXiv Detail & Related papers (2022-08-25T12:33:31Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
We propose a new approach to variational sparse coding that allows us to learn sparse distributions by thresholding samples.
We first evaluate and analyze our method by training a linear generator, showing that it has superior performance, statistical efficiency, and gradient estimation.
arXiv Detail & Related papers (2022-05-07T14:49:50Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction [27.020835928724775]
This work proposes a new computational framework for learning an explicit generative model for real-world datasets.
In particular, we propose to learn em a closed-loop transcription between a multi-class multi-dimensional data distribution and a linear discriminative representation (LDR) in the feature space.
Our experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation.
arXiv Detail & Related papers (2021-11-12T10:06:08Z) - Learning Generative Prior with Latent Space Sparsity Constraints [25.213673771175692]
It has been argued that the distribution of natural images do not lie in a single manifold but rather lie in a union of several submanifolds.
We propose a sparsity-driven latent space sampling (SDLSS) framework and develop a proximal meta-learning (PML) algorithm to enforce sparsity in the latent space.
The results demonstrate that for a higher degree of compression, the SDLSS method is more efficient than the state-of-the-art method.
arXiv Detail & Related papers (2021-05-25T14:12:04Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - Effective Version Space Reduction for Convolutional Neural Networks [61.84773892603885]
In active learning, sampling bias could pose a serious inconsistency problem and hinder the algorithm from finding the optimal hypothesis.
We examine active learning with convolutional neural networks through the principled lens of version space reduction.
arXiv Detail & Related papers (2020-06-22T17:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.