論文の概要: Blending Low and High-Level Semantics of Time Series for Better Masked Time Series Generation
- arxiv url: http://arxiv.org/abs/2408.16613v1
- Date: Thu, 29 Aug 2024 15:20:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:23:15.042112
- Title: Blending Low and High-Level Semantics of Time Series for Better Masked Time Series Generation
- Title(参考訳): 改良型マスク時系列生成のための低レベル・高レベル時系列解析
- Authors: Johan Vik Mathisen, Erlend Lokna, Daesoo Lee, Erlend Aune,
- Abstract要約: NC-VQVAEと呼ばれる新しいフレームワークを導入し、時系列生成アプローチに自己教師付き学習を統合する。
NC-VQVAEは, 合成試料の品質を著しく向上させることを示した。
- 参考スコア(独自算出の注目度): 0.8999666725996975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art approaches in time series generation (TSG), such as TimeVQVAE, utilize vector quantization-based tokenization to effectively model complex distributions of time series. These approaches first learn to transform time series into a sequence of discrete latent vectors, and then a prior model is learned to model the sequence. The discrete latent vectors, however, only capture low-level semantics (\textit{e.g.,} shapes). We hypothesize that higher-fidelity time series can be generated by training a prior model on more informative discrete latent vectors that contain both low and high-level semantics (\textit{e.g.,} characteristic dynamics). In this paper, we introduce a novel framework, termed NC-VQVAE, to integrate self-supervised learning into those TSG methods to derive a discrete latent space where low and high-level semantics are captured. Our experimental results demonstrate that NC-VQVAE results in a considerable improvement in the quality of synthetic samples.
- Abstract(参考訳): TimeVQVAEのような時系列生成(TSG)における最先端のアプローチは、ベクトル量子化に基づくトークン化を利用して、時系列の複雑な分布を効果的にモデル化する。
これらのアプローチはまず時系列を離散潜在ベクトルの列に変換することを学習し、その後、先行モデルを学習してシーケンスをモデル化する。
しかし、離散潜在ベクトルは低レベル意味論(\textit{e g ,} 形状)のみをキャプチャする。
我々は、高忠実度時系列は、低次および高次セマンティクス(\textit{e g ,} 特性ダイナミクス)を含むより情報的な離散潜在ベクトルの事前モデルを訓練することによって生成できると仮定する。
本稿では、NC-VQVAEと呼ばれる新しいフレームワークを導入し、これらTSG手法に自己教師付き学習を統合することにより、低レベルのセマンティクスがキャプチャーされる離散潜在空間を導出する。
NC-VQVAEは, 合成試料の品質を著しく向上させることを示した。
関連論文リスト
- A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
非定常PGDSは、基礎となる遷移行列が時間とともに進化できるように提案されている。
後続シミュレーションを行うために, 完全共役かつ効率的なギブスサンプリング装置を開発した。
実験により,提案した非定常PGDSは,関連するモデルと比較して予測性能が向上することを示した。
論文 参考訳(メタデータ) (2024-02-26T04:39:01Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Vector Quantized Time Series Generation with a Bidirectional Prior Model [0.3867363075280544]
時系列生成(TSG)の研究は、主にGAN(Generative Adversarial Networks)とリカレントニューラルネットワーク(RNN)の亜種の使用に焦点を当てている。
本稿では,ベクトル量子化(VQ)技術を用いてTSG問題に対処するTimeVQVAEを提案する。
また、低周波(LF)と高周波(HF)に分かれた時間周波数領域におけるVQモデリングを提案する。
論文 参考訳(メタデータ) (2023-03-08T17:27:39Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
本稿では,データセット内の各サンプルに対して均一な不規則な時系列を構成することを目的とした,単純かつ斬新な時系列計算手法を提案する。
我々は、観測時間の重複しないビン(「スライス」と呼ばれる)の中間点で定義される格子を固定し、各サンプルが所定の時間にすべての特徴に対して値を持つことを保証する。
これにより、完全に欠落した観察をインプットし、データ全体の時系列の均一な分類を可能にし、特別な場合には個々の欠落した特徴をインプットすることができる。
論文 参考訳(メタデータ) (2022-01-14T19:23:24Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
時系列データ生成のための新しい生成フレームワーク - RTSGANを提案する。
RTSGANは、時系列インスタンスと固定次元潜在ベクトルの間のマッピングを提供するエンコーダデコーダモジュールを学習する。
不足した値の時系列を生成するために、RTSGANに観測埋め込み層と決定・生成デコーダを更に装備する。
論文 参考訳(メタデータ) (2021-11-16T11:31:37Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z) - Learning from Irregularly-Sampled Time Series: A Missing Data
Perspective [18.493394650508044]
不規則にサンプリングされた時系列は、医療を含む多くの領域で発生する。
連続だが観測されていない関数からサンプリングされた指数値対の列として、不規則にサンプリングされた時系列データをモデル化する。
本稿では,変分オートエンコーダと生成対向ネットワークに基づく学習手法を提案する。
論文 参考訳(メタデータ) (2020-08-17T20:01:55Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。