A Catalog of Fairness-Aware Practices in Machine Learning Engineering
- URL: http://arxiv.org/abs/2408.16683v1
- Date: Thu, 29 Aug 2024 16:28:43 GMT
- Title: A Catalog of Fairness-Aware Practices in Machine Learning Engineering
- Authors: Gianmario Voria, Giulia Sellitto, Carmine Ferrara, Francesco Abate, Andrea De Lucia, Filomena Ferrucci, Gemma Catolino, Fabio Palomba,
- Abstract summary: Machine learning's widespread adoption in decision-making processes raises concerns about fairness.
There remains a gap in understanding and categorizing practices for engineering fairness throughout the machine learning lifecycle.
This paper presents a novel catalog of practices for addressing fairness in machine learning derived from a systematic mapping study.
- Score: 13.012624574172863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning's widespread adoption in decision-making processes raises concerns about fairness, particularly regarding the treatment of sensitive features and potential discrimination against minorities. The software engineering community has responded by developing fairness-oriented metrics, empirical studies, and approaches. However, there remains a gap in understanding and categorizing practices for engineering fairness throughout the machine learning lifecycle. This paper presents a novel catalog of practices for addressing fairness in machine learning derived from a systematic mapping study. The study identifies and categorizes 28 practices from existing literature, mapping them onto different stages of the machine learning lifecycle. From this catalog, the authors extract actionable items and implications for both researchers and practitioners in software engineering. This work aims to provide a comprehensive resource for integrating fairness considerations into the development and deployment of machine learning systems, enhancing their reliability, accountability, and credibility.
Related papers
- Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
We introduce key statistical methods such as Ordinary Least Squares (OLS) regression, Analysis of Variance (ANOVA) and logistic regression.
The document serves as a guide for researchers and practitioners, detailing how these techniques can provide deeper insights into model behavior, performance, and fairness.
arXiv Detail & Related papers (2024-10-02T10:03:29Z) - Application-Driven Innovation in Machine Learning [56.85396167616353]
We describe the paradigm of application-driven research in machine learning.
We show how this approach can productively synergize with methods-driven work.
Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation.
arXiv Detail & Related papers (2024-03-26T04:59:27Z) - FairCompass: Operationalising Fairness in Machine Learning [34.964477625987136]
There is a growing imperative to develop responsible AI solutions.
Despite a diverse assortment of machine learning fairness solutions is proposed in the literature.
There is reportedly a lack of practical implementation of these tools in real-world applications.
arXiv Detail & Related papers (2023-12-27T21:29:53Z) - Designing Explainable Predictive Machine Learning Artifacts: Methodology
and Practical Demonstration [0.0]
Decision-makers from companies across various industries are still largely reluctant to employ applications based on modern machine learning algorithms.
We ascribe this issue to the widely held view on advanced machine learning algorithms as "black boxes"
We develop a methodology which unifies methodological knowledge from design science research and predictive analytics with state-of-the-art approaches to explainable artificial intelligence.
arXiv Detail & Related papers (2023-06-20T15:11:26Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Fairness in Machine Learning: A Survey [0.0]
There is significant literature on approaches to mitigate bias and promote fairness.
This article seeks to provide an overview of the different schools of thought and approaches to mitigating (social) biases and increase fairness in the Machine Learning literature.
It organises approaches into the widely accepted framework of pre-processing, in-processing, and post-processing methods, subcategorizing into a further 11 method areas.
arXiv Detail & Related papers (2020-10-04T21:01:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.