An algebraic characterisation of Kochen-Specker contextuality
- URL: http://arxiv.org/abs/2408.16764v1
- Date: Thu, 29 Aug 2024 17:58:12 GMT
- Title: An algebraic characterisation of Kochen-Specker contextuality
- Authors: Markus Frembs,
- Abstract summary: Contextuality is a key distinguishing feature between classical and quantum physics.
It expresses a fundamental obstruction to describing quantum theory using classical concepts.
Different frameworks address different aspects of the phenomenon, yet their precise relationship often remains unclear.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextuality is a key distinguishing feature between classical and quantum physics. It expresses a fundamental obstruction to describing quantum theory using classical concepts. In turn, understood as a resource for quantum computation, it is expected to hold the key to quantum advantage. Yet, despite its long recognised importance in quantum foundations and, more recently, in quantum computation, the structural essence of contextuality has remained somewhat elusive - different frameworks address different aspects of the phenomenon, yet their precise relationship often remains unclear. This issue already looms large at the level of the Bell-Kochen-Specker theorem: while traditional proofs proceed by showing the nonexistence of valuations, the notion of state-independent contextuality in the marginal approach allows to prove contextuality from seemingly weaker assumptions. In the light of this, and at the absence of a unified mathematical framework for Kochen-Specker contextuality, the original algebraic approach has been widely abandoned, in favour of the study of contextual correlations. Here, we reinstate the algebraic perspective on contextuality. Concretely, by building on the novel concept of context connections, we reformulate the algebraic relations between observables originally postulated by Kochen and Specker, and we explicitly demonstrate their consistency with the notion of state-independent contextuality. In the present paper, we focus on the new conceptual ideas and discuss them in the concrete setting of spin-1 observables, specifically those in the example of [S. Yu and C.H. Oh, Phys. Rev. Lett., 108, 030402 (2012)]; in a companion paper, we generalise these ideas, obtain a complete characterisation of Kochen-Specker contextuality and provide a detailed comparison with the related notions of contextuality in the marginal and graph-theoretic approach.
Related papers
- Characterizing Contextuality via Rank Separation with Applications to Cloning [0.0]
Quantum contextuality is a key nonclassical feature essential for understanding advantages in quantum computation and communication.
We introduce a new framework to study contextuality based solely on information processing statistics.
We show that quantum contextuality provides the resource in optimal phase-covariant and universal cloning schemes.
arXiv Detail & Related papers (2024-06-27T17:56:04Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - State-independent all-versus-nothing arguments [1.223779595809275]
Contextuality is a key feature of quantum information that challenges classical intuitions.
This report provides a unified interpretation of contextuality by integrating Kochen-Specker type notions into the state-independent AvN argument.
arXiv Detail & Related papers (2023-11-19T04:08:50Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Violating the KCBS inequality with a toy mechanism [0.0]
We show a thought experiment'' where a classical object obeying the laws of classical physics is used to generate experimental data violating the KCBS inequality.
We give special attention to the distinction between classical realism and classicality, and to the contrast between contextuality within and beyond quantum theory.
arXiv Detail & Related papers (2021-09-16T00:36:31Z) - From the problem of Future Contingents to Peres-Mermin square
experiments: An introductory review to Contextuality [0.0]
We study the historical emergence of the concept from philosophical and logical issues.
We present and compare the main theoretical frameworks that have been derived.
We focus on the complex task of establishing experimental tests of contextuality.
arXiv Detail & Related papers (2021-05-28T13:33:39Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Holographic tensor network models and quantum error correction: A
topical review [78.28647825246472]
Recent progress in studies of holographic dualities has led to a confluence with concepts and techniques from quantum information theory.
A particularly successful approach has involved capturing holographic properties by means of tensor networks.
arXiv Detail & Related papers (2021-02-04T14:09:21Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - The logic of contextuality [0.0]
Contextuality is a key signature of quantum non-classicality.
We study the logic of contextuality in the setting of partial Boolean algebras.
arXiv Detail & Related papers (2020-11-05T19:04:04Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.