Characterizing Contextuality via Rank Separation with Applications to Cloning
- URL: http://arxiv.org/abs/2406.19382v1
- Date: Thu, 27 Jun 2024 17:56:04 GMT
- Title: Characterizing Contextuality via Rank Separation with Applications to Cloning
- Authors: Farid Shahandeh, Theodoros Yianni, Mina Doosti,
- Abstract summary: Quantum contextuality is a key nonclassical feature essential for understanding advantages in quantum computation and communication.
We introduce a new framework to study contextuality based solely on information processing statistics.
We show that quantum contextuality provides the resource in optimal phase-covariant and universal cloning schemes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum contextuality is a key nonclassical feature essential for understanding advantages in quantum computation and communication. We introduce a new framework to study contextuality based solely on information processing statistics. This simple and intuitive perspective leads to a powerful criterion denoted as rank separation for identifying contextuality in various quantum scenarios. We showcase the power of this technique through several applications, including a new derivation of Hardy's quantum excess-baggage theorem, and a simplified proof of contextuality for minimum error quantum state discrimination. Finally, we show as a prominent example that quantum contextuality provides the resource in optimal phase-covariant and universal cloning schemes, hence establishing it as a fundamental source of nonclassicality in all known optimal quantum cloning scenarios.
Related papers
- An algebraic characterisation of Kochen-Specker contextuality [0.0]
Contextuality is a key distinguishing feature between classical and quantum physics.
It expresses a fundamental obstruction to describing quantum theory using classical concepts.
Different frameworks address different aspects of the phenomenon, yet their precise relationship often remains unclear.
arXiv Detail & Related papers (2024-08-29T17:58:12Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum contextuality provides communication complexity advantage [0.683495465775299]
We show that for any quantum state and observables of sufficiently small dimension producing contextuality, there exists a communication task with quantum advantage.
We show how to convert each of these communication tasks into a semi-device independent protocol for quantum key distribution.
arXiv Detail & Related papers (2022-05-06T15:40:57Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - Characterising and bounding the set of quantum behaviours in
contextuality scenarios [0.0]
This work defines contextuality scenarios, along with the polytope of general contextual behaviours.
We formulate novel semidefinite programming relaxations for bounding these sets of quantum contextual behaviours.
Most significantly, to circumvent the inadequacy of pure states and projective measurements, we present a novel unitary operator based semidefinite relaxation technique.
arXiv Detail & Related papers (2020-10-12T17:00:07Z) - Bounding and simulating contextual correlations in quantum theory [0.0]
We introduce a hierarchy of semidefinite relaxations of the set of quantum correlations in generalised contextuality scenarios.
We use it to determine the maximal quantum violation of several noncontextuality inequalities whose maximum violations were previously unknown.
We then go further and use it to prove that certain preparation-contextual correlations cannot be explained with pure states.
arXiv Detail & Related papers (2020-10-09T18:19:09Z) - Quantum Advantage in Information Retrieval [0.0]
We introduce a related task - the Torpedo Game - and show that it admits greater quantum advantage than the comparable random access code.
We pinpoint a characteristic of quantum systems that enables quantum advantage in any bounded-memory information retrieval task.
Our perfect qutrit strategy for the Torpedo Game entails the strongest type of inconsistency with non-contextual hidden variables.
arXiv Detail & Related papers (2020-07-30T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.