論文の概要: Generative AI in Ship Design
- arxiv url: http://arxiv.org/abs/2408.16798v1
- Date: Thu, 29 Aug 2024 08:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 17:28:49.085883
- Title: Generative AI in Ship Design
- Title(参考訳): 船舶設計におけるジェネレーティブAI
- Authors: Sahil Thakur, Navneet V Saxena, Prof Sitikantha Roy,
- Abstract要約: 生成AIは、機械学習と人工知能に根ざした計算アルゴリズムを利用して船体設計を最適化する、新しいアプローチを提案する。
本報告では、データセット収集、モデルアーキテクチャの選択、トレーニング、検証などのステップを含む、この目的のための生成AIの体系的な作成について概説する。
全体として、このアプローチは、より広い設計空間を探索し、多分野最適化の目的を効果的に統合することで、船の設計に革命をもたらすことを約束している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The process of ship design is intricate, heavily influenced by the hull form which accounts for approximately 70% of the total cost. Traditional methods rely on human-driven iterative processes based on naval architecture principles and engineering analysis. In contrast, generative AI presents a novel approach, utilizing computational algorithms rooted in machine learning and artificial intelligence to optimize ship hull design. This report outlines the systematic creation of a generative AI for this purpose, involving steps such as dataset collection, model architecture selection, training, and validation. Utilizing the "SHIP-D" dataset, consisting of 30,000 hull forms, the report adopts the Gaussian Mixture Model (GMM) as the generative model architecture. GMMs offer a statistical framework to analyze data distribution, crucial for generating innovative ship designs efficiently. Overall, this approach holds promise in revolutionizing ship design by exploring a broader design space and integrating multidisciplinary optimization objectives effectively.
- Abstract(参考訳): 船体設計のプロセスは複雑で、総コストの約70%を占める船体形状の影響を強く受けている。
従来の手法は、海軍アーキテクチャの原則と技術分析に基づく人間主導の反復プロセスに依存している。
対照的に、生成AIは、機械学習と人工知能に根ざした計算アルゴリズムを利用して船体設計を最適化する、新しいアプローチを提示している。
本報告では、データセット収集、モデルアーキテクチャの選択、トレーニング、検証などのステップを含む、この目的のための生成AIの体系的な作成について概説する。
3万の船体からなる「SHIP-D」データセットを用いて、Gaussian Mixture Model(GMM)を生成モデルアーキテクチャとして採用した。
GMMは、データ分散を分析する統計的フレームワークを提供し、革新的な船の設計を効率的に作成するのに不可欠である。
全体として、このアプローチは、より広い設計空間を探索し、多分野最適化の目的を効果的に統合することで、船の設計に革命をもたらすことを約束している。
関連論文リスト
- Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Ship-D: Ship Hull Dataset for Design Optimization using Machine Learning [4.091593765662773]
本稿では, 設計および機能性能情報を備えた3万隻の船体からなる大規模データセットについて述べる。
本稿では,既存の船体を正確に再構成するパラメータ化機能を示すために,一般公開CADリポジトリから12種類の船体について紹介する。
論文 参考訳(メタデータ) (2023-05-14T23:47:20Z) - ARRID: ANN-based Rotordynamics for Robust and Integrated Design [0.0]
ARRIDは、製造逸脱の影響を含む高速な性能情報を提供する。
設計者は、設計のパラメータと動作条件を操作でき、数秒で性能情報を得ることができる。
論文 参考訳(メタデータ) (2022-08-25T16:08:05Z) - An Adaptive and Scalable ANN-based Model-Order-Reduction Method for
Large-Scale TO Designs [22.35243726859667]
トポロジ最適化(TO)は、興味のある最適な性能で構造設計を得るための体系的なアプローチを提供する。
ディープラーニングベースのモデルは、プロセスの高速化のために開発されている。
MapNetは、粗いスケールから細かいスケールまでの関心領域をマッピングするニューラルネットワークである。
論文 参考訳(メタデータ) (2022-03-20T10:12:24Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Automated Evolutionary Approach for the Design of Composite Machine
Learning Pipelines [48.7576911714538]
提案手法は、複合機械学習パイプラインの設計を自動化することを目的としている。
パイプラインをカスタマイズ可能なグラフベースの構造で設計し、得られた結果を分析して再生する。
このアプローチのソフトウェア実装は、オープンソースフレームワークとして紹介されている。
論文 参考訳(メタデータ) (2021-06-26T23:19:06Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
本研究では、トポロジ設計の多様性を最大化する報酬関数を備えた強化学習に基づく生成設計プロセスを提案する。
RLをベースとした生成設計は,GPUを完全自動で活用することにより,短時間で多数の多様な設計を生成できることを示す。
論文 参考訳(メタデータ) (2020-08-17T06:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。