GSTAM: Efficient Graph Distillation with Structural Attention-Matching
- URL: http://arxiv.org/abs/2408.16871v1
- Date: Thu, 29 Aug 2024 19:40:04 GMT
- Title: GSTAM: Efficient Graph Distillation with Structural Attention-Matching
- Authors: Arash Rasti-Meymandi, Ahmad Sajedi, Zhaopan Xu, Konstantinos N. Plataniotis,
- Abstract summary: We introduce Graph Distillation with Structural Attention Matching ( GSTAM), a novel method for condensing graph classification datasets.
GSTAM leverages the attention maps of GNNs to distill structural information from the original dataset into synthetic graphs.
Comprehensive experiments demonstrate GSTAM's superiority over existing methods, achieving 0.45% to 6.5% better performance in extreme condensation ratios.
- Score: 13.673737442696154
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph distillation has emerged as a solution for reducing large graph datasets to smaller, more manageable, and informative ones. Existing methods primarily target node classification, involve computationally intensive processes, and fail to capture the true distribution of the full graph dataset. To address these issues, we introduce Graph Distillation with Structural Attention Matching (GSTAM), a novel method for condensing graph classification datasets. GSTAM leverages the attention maps of GNNs to distill structural information from the original dataset into synthetic graphs. The structural attention-matching mechanism exploits the areas of the input graph that GNNs prioritize for classification, effectively distilling such information into the synthetic graphs and improving overall distillation performance. Comprehensive experiments demonstrate GSTAM's superiority over existing methods, achieving 0.45% to 6.5% better performance in extreme condensation ratios, highlighting its potential use in advancing distillation for graph classification tasks (Code available at https://github.com/arashrasti96/GSTAM).
Related papers
- Greener GRASS: Enhancing GNNs with Encoding, Rewiring, and Attention [12.409982249220812]
We introduce Graph Attention with Structures (GRASS), a novel GNN architecture, to enhance graph relative attention.
GRASS rewires the input graph by superimposing a random regular graph to achieve long-range information propagation.
It also employs a novel additive attention mechanism tailored for graph-structured data.
arXiv Detail & Related papers (2024-07-08T06:21:56Z) - Mirage: Model-Agnostic Graph Distillation for Graph Classification [16.764894668661952]
Graph distillation is an effort to construct a smaller synthetic training set from the original training data.
Mirage is built on the insight that a message-passing GNN decomposes the input graph into a multiset of computation trees.
arXiv Detail & Related papers (2023-10-14T04:21:52Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Graph-based Knowledge Distillation: A survey and experimental evaluation [4.713436329217004]
Knowledge Distillation (KD) has been introduced to enhance existing Graph Neural Networks (GNNs)
KD involves transferring the soft-label supervision of the large teacher model to the small student model while maintaining prediction performance.
This paper first introduces the background of graph and KD. It then provides a comprehensive summary of three types of Graph-based Knowledge Distillation methods.
arXiv Detail & Related papers (2023-02-27T11:39:23Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - A Graph Data Augmentation Strategy with Entropy Preserving [11.886325179121226]
We introduce a novel graph entropy definition as a quantitative index to evaluate feature information among a graph.
Under considerations of preserving graph entropy, we propose an effective strategy to generate training data using a perturbed mechanism.
Our proposed approach significantly enhances the robustness and generalization ability of GCNs during the training process.
arXiv Detail & Related papers (2021-07-13T12:58:32Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level graph representation learning tasks.
This paper proposes a hierarchical graph-level representation learning framework, which is adaptively sensitive to graph structures.
arXiv Detail & Related papers (2021-04-13T06:22:24Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.