論文の概要: Revising Multimodal VAEs with Diffusion Decoders
- arxiv url: http://arxiv.org/abs/2408.16883v1
- Date: Thu, 29 Aug 2024 20:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 17:08:59.101468
- Title: Revising Multimodal VAEs with Diffusion Decoders
- Title(参考訳): 拡散デコーダを用いたマルチモーダルVAEの改訂
- Authors: Daniel Wesego, Amirmohammad Rooshenas,
- Abstract要約: マルチモーダルVAEは、しばしば高品質な出力を生成するのに苦労する。
中心的な問題は、潜在空間の制限された合同表現にある。
フィードフォワードデコーダは必然的にジョイント潜在空間を制約し、他のモダリティの品質も低下させる。
- 参考スコア(独自算出の注目度): 1.9413548770753526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal VAEs often struggle with generating high-quality outputs, a challenge that extends beyond the inherent limitations of the VAE framework. The core issue lies in the restricted joint representation of the latent space, particularly when complex modalities like images are involved. Feedforward decoders, commonly used for these intricate modalities, inadvertently constrain the joint latent space, leading to a degradation in the quality of the other modalities as well. Although recent studies have shown improvement by introducing modality-specific representations, the issue remains significant. In this work, we demonstrate that incorporating a flexible diffusion decoder specifically for the image modality not only enhances the generation quality of the images but also positively impacts the performance of the other modalities that rely on feedforward decoders. This approach addresses the limitations imposed by conventional joint representations and opens up new possibilities for improving multimodal generation tasks using the multimodal VAE framework. Our model provides state-of-the-art results compared to other multimodal VAEs in different datasets with higher coherence and superior quality in the generated modalities
- Abstract(参考訳): マルチモーダルなVAEは、VAEフレームワーク固有の制限を超えて、高品質なアウトプットを生成するのに苦労することが多い。
中心的な問題は、特に画像のような複雑なモジュラリティが関与する場合、潜在空間の制限された結合表現にある。
これらの複雑なモダリティに一般的に使用されるフィードフォワードデコーダは、必然的にジョイント潜在空間を制約し、他のモダリティの品質も低下させる。
近年の研究では、モダリティに特有な表現を導入することで改善が見られたが、問題は依然として顕著である。
本研究では,画像モダリティに特化してフレキシブルな拡散デコーダを組み込むことで,画像の生成品質を高めるだけでなく,フィードフォワードデコーダに依存する他のモダリティの性能にも肯定的な影響を与えることを示す。
提案手法は,従来の共同表現による制約に対処し,マルチモーダルVAEフレームワークを用いたマルチモーダル生成タスクの改善に向けた新たな可能性を開く。
我々のモデルは、異なるデータセットにおける他のマルチモーダルVAEと比較して、コヒーレンスが高く、生成したモダリティに優れた品質を持つ、最先端の結果を提供する。
関連論文リスト
- Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality [69.76121008898677]
きめ細かい選択校正CLIPは局所的硬陰性損失と選択的校正正規化を統合している。
評価の結果、FSC-CLIPは、最先端モデルと同等の合成性を達成できるだけでなく、強力なマルチモーダル能力を保っていることがわかった。
論文 参考訳(メタデータ) (2024-10-07T17:16:20Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEnは、マルチモーダル大言語モデル(MLLM)のマルチモーダル推論能力を高めるために設計された革新的なフレームワークである。
MaVEnは複雑なマルチイメージのシナリオにおけるMLLMの理解を著しく向上するとともに,単一イメージのコンテキストにおけるパフォーマンスも向上することを示す。
論文 参考訳(メタデータ) (2024-08-22T11:57:16Z) - MM-Diff: High-Fidelity Image Personalization via Multi-Modal Condition Integration [7.087475633143941]
MM-Diffはチューニング不要な画像パーソナライズフレームワークで、単写体と複数体の高忠実度画像を数秒で生成できる。
MM-Diff は視覚エンコーダを用いて入力画像を CLS に変換し、埋め込みをパッチする。
一方、CLS埋め込みはテキスト埋め込みを強化するために使用され、一方、パッチ埋め込みと共に、少数の詳細に富んだ主題埋め込みを導出する。
論文 参考訳(メタデータ) (2024-03-22T09:32:31Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Score-Based Multimodal Autoencoders [4.594159253008448]
マルチモーダル変分オートエンコーダ(VAEs)は、複数のモダリティを与えられた潜在空間内でのトラクタブルな後部の構築を容易にする。
本研究では, マルチモーダルVAEの生成性能を高めるための代替手法について検討した。
本モデルでは,単調なVAEの優れた生成品質と,異なるモダリティをまたいだコヒーレントな統合を組み合わせた。
論文 参考訳(メタデータ) (2023-05-25T04:43:47Z) - Collaborative Diffusion for Multi-Modal Face Generation and Editing [34.16906110777047]
本稿では,事前学習した単モーダル拡散モデルと協調して複数モーダル顔の生成と編集を行うコラボレーティブ拡散について述べる。
具体的には、事前学習された各ユニモーダルモデルに対する空間的時間的影響関数を予測することにより、マルチモーダルな認知ステップを適応的に幻覚するメタネットワークである動的ディフューザを提案する。
論文 参考訳(メタデータ) (2023-04-20T17:59:02Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
本稿では,「モダリティ変換」タスクと「マルチモダリティ生成」タスクの両方を実行することができる統一型マルチモーダル生成モデルを提案する。
具体的には,マルチモーダル信号の離散拡散過程を統一遷移行列を用いて統一する。
提案手法は, 様々な生成タスクにおいて, 最先端のソリューションと同等に動作可能である。
論文 参考訳(メタデータ) (2022-11-27T14:46:01Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
このタスクを達成するために生成モデルを使用する際の大きな課題は、すべてのモダリティと対応する出力を含むペアデータの欠如である。
本稿では,拡散確率的合成モデルに基づく多モデル先行画像生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-10T12:23:05Z) - Mitigating Modality Collapse in Multimodal VAEs via Impartial
Optimization [7.4262579052708535]
この効果はマルチモーダルVAEトレーニングにおける勾配の相反の結果である,と我々は主張する。
勾配が矛盾する計算グラフのサブグラフを検出する方法を示す。
実験により,本フレームワークは,モジュール間の遅延空間の再構成性能,条件生成,コヒーレンスを著しく向上させることを示した。
論文 参考訳(メタデータ) (2022-06-09T13:29:25Z) - On the Limitations of Multimodal VAEs [9.449650062296824]
マルチモーダル変分オートエンコーダ(VAE)は、弱い教師付きデータに対する効率的な生成モデルとして期待されている。
弱い監督の利点にもかかわらず、単調なVAEと比較すると、遺伝子品質の差が見られる。
論文 参考訳(メタデータ) (2021-10-08T13:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。