LV-UNet: A Lightweight and Vanilla Model for Medical Image Segmentation
- URL: http://arxiv.org/abs/2408.16886v1
- Date: Thu, 29 Aug 2024 20:19:10 GMT
- Title: LV-UNet: A Lightweight and Vanilla Model for Medical Image Segmentation
- Authors: Juntao Jiang, Mengmeng Wang, Huizhong Tian, Lingbo Cheng, Yong Liu,
- Abstract summary: This paper proposes a lightweight and vanilla model called LV-ColonUNet, which effectively utilizes pre-trained MobileNetv3-Large models and introduces inference modules.
Experiments are conducted on ISIC 2016, BUSI, CVC- ClinicDB, CVC-SEG datasets, achieving better performance compared to the state-of-theart and classic models.
- Score: 16.604140484767377
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although the progress made by large models in computer vision, optimization challenges, the complexity of transformer models, computational limitations, and the requirements of practical applications call for simpler designs in model architecture for medical image segmentation, especially in mobile medical devices that require lightweight and deployable models with real-time performance. However, some of the current lightweight models exhibit poor robustness across different datasets, which hinders their broader adoption. This paper proposes a lightweight and vanilla model called LV-UNet, which effectively utilizes pre-trained MobileNetv3-Large models and introduces fusible modules. It can be trained using an improved deep training strategy and switched to deployment mode during inference, reducing both parameter count and computational load. Experiments are conducted on ISIC 2016, BUSI, CVC- ClinicDB, CVC-ColonDB, and Kvair-SEG datasets, achieving better performance compared to the state-of-the-art and classic models.
Related papers
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - The Case for Co-Designing Model Architectures with Hardware [13.022505733049597]
We provide a set of guidelines for users to maximize the runtime performance of their transformer models.
We find the throughput of models with efficient model shapes is up to 39% higher.
arXiv Detail & Related papers (2024-01-25T19:50:31Z) - A Lightweight Feature Fusion Architecture For Resource-Constrained Crowd
Counting [3.5066463427087777]
We introduce two lightweight models to enhance the versatility of crowd-counting models.
These models maintain the same downstream architecture while incorporating two distinct backbones: MobileNet and MobileViT.
We leverage Adjacent Feature Fusion to extract diverse scale features from a Pre-Trained Model (PTM) and subsequently combine these features seamlessly.
arXiv Detail & Related papers (2024-01-11T15:13:31Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
We resort to plain vision transformers with about 100 million parameters and make the first attempt to propose large vision models customized for remote sensing tasks.
Specifically, to handle the large image size and objects of various orientations in RS images, we propose a new rotated varied-size window attention.
Experiments on detection tasks demonstrate the superiority of our model over all state-of-the-art models, achieving 81.16% mAP on the DOTA-V1.0 dataset.
arXiv Detail & Related papers (2022-08-08T09:08:40Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - Coreference Resolution without Span Representations [20.84150608402576]
We introduce a lightweight coreference model that removes the dependency on span representations, handcrafted features, and NLPs.
Our model performs competitively with the current end-to-end model, while being simpler and more efficient.
arXiv Detail & Related papers (2021-01-02T11:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.