A longitudinal sentiment analysis of Sinophobia during COVID-19 using large language models
- URL: http://arxiv.org/abs/2408.16942v1
- Date: Thu, 29 Aug 2024 23:39:11 GMT
- Title: A longitudinal sentiment analysis of Sinophobia during COVID-19 using large language models
- Authors: Chen Wang, Rohitash Chandra,
- Abstract summary: The COVID-19 pandemic has exacerbated xenophobia, particularly Sinophobia, leading to widespread discrimination against individuals of Chinese descent.
We present a sentiment analysis framework utilising LLMs for longitudinal sentiment analysis of the Sinophobic sentiments expressed in X (Twitter) during the COVID-19 pandemic.
The results show a significant correlation between the spikes in Sinophobic tweets, Sinophobic sentiments and surges in COVID-19 cases, revealing that the evolution of the pandemic influenced public sentiment and the prevalence of Sinophobic discourse.
- Score: 3.3741245091336083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has exacerbated xenophobia, particularly Sinophobia, leading to widespread discrimination against individuals of Chinese descent. Large language models (LLMs) are pre-trained deep learning models used for natural language processing (NLP) tasks. The ability of LLMs to understand and generate human-like text makes them particularly useful for analysing social media data to detect and evaluate sentiments. We present a sentiment analysis framework utilising LLMs for longitudinal sentiment analysis of the Sinophobic sentiments expressed in X (Twitter) during the COVID-19 pandemic. The results show a significant correlation between the spikes in Sinophobic tweets, Sinophobic sentiments and surges in COVID-19 cases, revealing that the evolution of the pandemic influenced public sentiment and the prevalence of Sinophobic discourse. Furthermore, the sentiment analysis revealed a predominant presence of negative sentiments, such as annoyance and denial, which underscores the impact of political narratives and misinformation shaping public opinion. The lack of empathetic sentiment which was present in previous studies related to COVID-19 highlights the way the political narratives in media viewed the pandemic and how it blamed the Chinese community. Our study highlights the importance of transparent communication in mitigating xenophobic sentiments during global crises.
Related papers
- Large language models for sentiment analysis of newspaper articles during COVID-19: The Guardian [0.16777183511743468]
This study provides a sentiment analysis of The Guardian newspaper during various stages of COVID-19.
During the early pandemic stages, public sentiment prioritised urgent crisis response, later shifting focus to addressing the impact on health and the economy.
Results indicate that during the early pandemic stages, public sentiment prioritised urgent crisis response, later shifting focus to addressing the impact on health and the economy.
arXiv Detail & Related papers (2024-05-20T07:10:52Z) - A Comparative Analysis of the COVID-19 Infodemic in English and Chinese:
Insights from Social Media Textual Data [2.641576480886427]
The COVID-19 infodemic, characterized by the rapid spread of misinformation and unverified claims related to the pandemic, presents a significant challenge.
This paper presents a comparative analysis of the COVID-19 infodemic in the English and Chinese languages, utilizing textual data extracted from social media platforms.
arXiv Detail & Related papers (2023-11-14T08:55:11Z) - Inducing anxiety in large language models can induce bias [47.85323153767388]
We focus on twelve established large language models (LLMs) and subject them to a questionnaire commonly used in psychiatry.
Our results show that six of the latest LLMs respond robustly to the anxiety questionnaire, producing comparable anxiety scores to humans.
Anxiety-induction not only influences LLMs' scores on an anxiety questionnaire but also influences their behavior in a previously-established benchmark measuring biases such as racism and ageism.
arXiv Detail & Related papers (2023-04-21T16:29:43Z) - Coronavirus statistics causes emotional bias: a social media text mining
perspective [4.042350304426975]
This paper proposes a deep learning model which classifies texts related to the pandemic from text data with place labels.
Next, it conducts a sentiment analysis based on multi-task learning.
Finally, it carries out a fixed-effect panel regression with outputs of the sentiment analysis.
arXiv Detail & Related papers (2022-11-16T03:36:13Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
We compare and identify cognitive aspects on deep neural-based visual lip-reading models.
We observe a strong correlation between these theories in cognitive psychology and our unique modeling.
arXiv Detail & Related papers (2021-10-13T05:30:50Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
We present CovidEmo, 1K tweets labeled with emotions.
We examine how well large pre-trained language models generalize across domains and crises.
arXiv Detail & Related papers (2021-07-23T04:07:14Z) - COVID-19 sentiment analysis via deep learning during the rise of novel
cases [0.5156484100374059]
We use deep learning based language models via long short-term memory (LSTM) recurrent neural networks for sentiment analysis on Twitter.
We find that the majority of the tweets have been positive with high levels of optimism during the rise of the COVID-19 cases in India.
We find that the optimistic and joking tweets mostly dominated the monthly tweets and there was a much lower number of negative sentiments expressed.
arXiv Detail & Related papers (2021-04-05T04:31:19Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
Country image has a profound influence on international relations and economic development.
In the worldwide outbreak of COVID-19, countries and their people display different reactions.
In this study, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset.
arXiv Detail & Related papers (2020-09-12T15:54:51Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z) - #Coronavirus or #Chinesevirus?!: Understanding the negative sentiment
reflected in Tweets with racist hashtags across the development of COVID-19 [1.0878040851638]
We focus on the analysis of negative sentiment reflected in tweets marked with racist hashtags.
We propose a stage-based approach to capture how the negative sentiment changes along with the three development stages of COVID-19.
arXiv Detail & Related papers (2020-05-17T11:15:50Z) - A Framework for the Computational Linguistic Analysis of Dehumanization [52.735780962665814]
We analyze discussions of LGBTQ people in the New York Times from 1986 to 2015.
We find increasingly humanizing descriptions of LGBTQ people over time.
The ability to analyze dehumanizing language at a large scale has implications for automatically detecting and understanding media bias as well as abusive language online.
arXiv Detail & Related papers (2020-03-06T03:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.