Point Neuron Learning: A New Physics-Informed Neural Network Architecture
- URL: http://arxiv.org/abs/2408.16969v1
- Date: Fri, 30 Aug 2024 02:07:13 GMT
- Title: Point Neuron Learning: A New Physics-Informed Neural Network Architecture
- Authors: Hanwen Bi, Thushara D. Abhayapala,
- Abstract summary: This paper proposes a new physics-informed neural network architecture.
It embeds the fundamental solution of the wave equation into the network architecture, enabling the learned model to strictly satisfy the wave equation.
Compared to other PINN methods, our approach directly processes complex numbers and offers better interpretability and generalizability.
- Score: 8.545030794905584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning and neural networks have advanced numerous research domains, but challenges such as large training data requirements and inconsistent model performance hinder their application in certain scientific problems. To overcome these challenges, researchers have investigated integrating physics principles into machine learning models, mainly through: (i) physics-guided loss functions, generally termed as physics-informed neural networks, and (ii) physics-guided architectural design. While both approaches have demonstrated success across multiple scientific disciplines, they have limitations including being trapped to a local minimum, poor interpretability, and restricted generalizability. This paper proposes a new physics-informed neural network (PINN) architecture that combines the strengths of both approaches by embedding the fundamental solution of the wave equation into the network architecture, enabling the learned model to strictly satisfy the wave equation. The proposed point neuron learning method can model an arbitrary sound field based on microphone observations without any dataset. Compared to other PINN methods, our approach directly processes complex numbers and offers better interpretability and generalizability. We evaluate the versatility of the proposed architecture by a sound field reconstruction problem in a reverberant environment. Results indicate that the point neuron method outperforms two competing methods and can efficiently handle noisy environments with sparse microphone observations.
Related papers
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.
Our method combines physics blocks as mathematical operators from physics-based models with learning blocks comprising feed-forward layers.
Compared to conventional neural network-based methods, our method improves generalizability with substantially low data requirements.
arXiv Detail & Related papers (2024-11-18T11:58:20Z) - Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
We propose a PINN framework with several improvements for forward and inverse problems for ODE systems.
The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations.
Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
arXiv Detail & Related papers (2024-06-07T17:40:38Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Implicit neural representation with physics-informed neural networks for
the reconstruction of the early part of room impulse responses [16.89505645696765]
We exploit physics-informed neural networks to reconstruct the early part of missing room impulse responses in a linear array.
The proposed model achieves accurate reconstruction and performance in line with respect to state-of-the-art deep-learning and compress sensing techniques.
arXiv Detail & Related papers (2023-06-20T13:01:00Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
We integrate data, physics, and uncertainties by combining neural networks, physics-informed modeling, and Bayesian inference.
Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both.
We anticipate that the underlying concepts and trends generalize to more complex disease conditions.
arXiv Detail & Related papers (2022-05-12T19:04:31Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Learning the ground state of a non-stoquastic quantum Hamiltonian in a
rugged neural network landscape [0.0]
We investigate a class of universal variational wave-functions based on artificial neural networks.
In particular, we show that in the present setup the neural network expressivity and Monte Carlo sampling are not primary limiting factors.
arXiv Detail & Related papers (2020-11-23T05:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.