2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction
- URL: http://arxiv.org/abs/2408.16982v1
- Date: Fri, 30 Aug 2024 03:04:11 GMT
- Title: 2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction
- Authors: Ruihan Yu, Tianyu Huang, Jingwang Ling, Feng Xu,
- Abstract summary: 2D Gaussian Splatting has recently emerged as a significant method in 3D reconstruction.
We propose to use the Gaussian-Hermite kernel as the new primitive in Gaussian splatting.
Our experiments demonstrate the extraordinary performance of Gaussian-Hermite kernel in both geometry reconstruction and novel-view synthesis tasks.
- Score: 7.787937866297091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 2D Gaussian Splatting has recently emerged as a significant method in 3D reconstruction, enabling novel view synthesis and geometry reconstruction simultaneously. While the well-known Gaussian kernel is broadly used, its lack of anisotropy and deformation ability leads to dim and vague edges at object silhouettes, limiting the reconstruction quality of current Gaussian splatting methods. To enhance the representation power, we draw inspiration from quantum physics and propose to use the Gaussian-Hermite kernel as the new primitive in Gaussian splatting. The new kernel takes a unified mathematical form and extends the Gaussian function, which serves as the zero-rank term in the updated formulation. Our experiments demonstrate the extraordinary performance of Gaussian-Hermite kernel in both geometry reconstruction and novel-view synthesis tasks. The proposed kernel outperforms traditional Gaussian Splatting kernels, showcasing its potential for high-quality 3D reconstruction and rendering.
Related papers
- GaussianBlock: Building Part-Aware Compositional and Editable 3D Scene by Primitives and Gaussians [14.683337059919692]
We propose a novel part-aware compositional reconstruction method, called GaussianBlock, that enables semantically coherent and disentangled representations.
Our reconstructed scenes are evidenced to be disentangled, compositional, and compact across diverse benchmarks, enabling seamless, direct and precise editing.
arXiv Detail & Related papers (2024-10-02T13:26:28Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting (3DGS) has emerged as a promising technique capable of real-time rendering with high-quality 3D reconstruction.
Despite its potential, 3DGS encounters challenges, including needle-like artifacts, suboptimal geometries, and inaccurate normals.
We introduce effective rank as a regularization, which constrains the structure of the Gaussians.
arXiv Detail & Related papers (2024-06-17T15:51:59Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - GaussianCube: A Structured and Explicit Radiance Representation for 3D Generative Modeling [55.05713977022407]
We introduce a radiance representation that is both structured and fully explicit and thus greatly facilitates 3D generative modeling.
We derive GaussianCube by first using a novel densification-constrained Gaussian fitting algorithm, which yields high-accuracy fitting.
Experiments conducted on unconditional and class-conditioned object generation, digital avatar creation, and text-to-3D all show that our model synthesis achieves state-of-the-art generation results.
arXiv Detail & Related papers (2024-03-28T17:59:50Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Isotropic Gaussian Splatting for Real-Time Radiance Field Rendering [15.498640737050412]
The proposed method can be applied in a large range applications, such as 3D reconstruction, view synthesis, and dynamic object modeling.
The experiments confirm that the proposed method is about bf 100X faster without losing the geometry representation accuracy.
arXiv Detail & Related papers (2024-03-21T09:02:31Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities.
This paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input.
arXiv Detail & Related papers (2024-03-19T17:57:52Z) - GaussianHead: High-fidelity Head Avatars with Learnable Gaussian Derivation [35.39887092268696]
This paper presents a framework to model the actional human head with anisotropic 3D Gaussians.
In experiments, our method can produce high-fidelity renderings, outperforming state-of-the-art approaches in reconstruction, cross-identity reenactment, and novel view synthesis tasks.
arXiv Detail & Related papers (2023-12-04T05:24:45Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
We propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces.
The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure.
We introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin.
arXiv Detail & Related papers (2023-12-01T07:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.