GaussianBlock: Building Part-Aware Compositional and Editable 3D Scene by Primitives and Gaussians
- URL: http://arxiv.org/abs/2410.01535v2
- Date: Sun, 6 Oct 2024 08:58:10 GMT
- Title: GaussianBlock: Building Part-Aware Compositional and Editable 3D Scene by Primitives and Gaussians
- Authors: Shuyi Jiang, Qihao Zhao, Hossein Rahmani, De Wen Soh, Jun Liu, Na Zhao,
- Abstract summary: We propose a novel part-aware compositional reconstruction method, called GaussianBlock, that enables semantically coherent and disentangled representations.
Our reconstructed scenes are evidenced to be disentangled, compositional, and compact across diverse benchmarks, enabling seamless, direct and precise editing.
- Score: 14.683337059919692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, with the development of Neural Radiance Fields and Gaussian Splatting, 3D reconstruction techniques have achieved remarkably high fidelity. However, the latent representations learnt by these methods are highly entangled and lack interpretability. In this paper, we propose a novel part-aware compositional reconstruction method, called GaussianBlock, that enables semantically coherent and disentangled representations, allowing for precise and physical editing akin to building blocks, while simultaneously maintaining high fidelity. Our GaussianBlock introduces a hybrid representation that leverages the advantages of both primitives, known for their flexible actionability and editability, and 3D Gaussians, which excel in reconstruction quality. Specifically, we achieve semantically coherent primitives through a novel attention-guided centering loss derived from 2D semantic priors, complemented by a dynamic splitting and fusion strategy. Furthermore, we utilize 3D Gaussians that hybridize with primitives to refine structural details and enhance fidelity. Additionally, a binding inheritance strategy is employed to strengthen and maintain the connection between the two. Our reconstructed scenes are evidenced to be disentangled, compositional, and compact across diverse benchmarks, enabling seamless, direct and precise editing while maintaining high quality.
Related papers
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
We introduce G2SDF, a novel approach that integrates a neural implicit Signed Distance Field into the Gaussian Splatting framework.
G2SDF achieves superior quality than prior works while maintaining the efficiency of 3DGS.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis [28.3325478008559]
We propose SCGaussian, a Structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure.
We optimize the scene structure in two folds: rendering geometry and, more importantly, the position of Gaussian primitives.
Experiments on forward-facing, surrounding, and complex large scenes show the effectiveness of our approach with state-of-the-art performance and high efficiency.
arXiv Detail & Related papers (2024-11-06T03:28:06Z) - 2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction [7.787937866297091]
2D Gaussian Splatting has recently emerged as a significant method in 3D reconstruction.
We propose to use the Gaussian-Hermite kernel as the new primitive in Gaussian splatting.
Our experiments demonstrate the extraordinary performance of Gaussian-Hermite kernel in both geometry reconstruction and novel-view synthesis tasks.
arXiv Detail & Related papers (2024-08-30T03:04:11Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting (3DGS) has emerged as a promising technique capable of real-time rendering with high-quality 3D reconstruction.
Despite its potential, 3DGS encounters challenges, including needle-like artifacts, suboptimal geometries, and inaccurate normals.
We introduce effective rank as a regularization, which constrains the structure of the Gaussians.
arXiv Detail & Related papers (2024-06-17T15:51:59Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplat is a method to predict semantic Gaussians in a 3D latent space that can be splatted and decoded by a light-weight generative 2D architecture.
We show that latentSplat outperforms previous works in reconstruction quality and generalization, while being fast and scalable to high-resolution data.
arXiv Detail & Related papers (2024-03-24T20:48:36Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis.
We propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation.
Our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75times$ compared to vanilla 3DGS.
arXiv Detail & Related papers (2024-03-21T16:28:58Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities.
This paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input.
arXiv Detail & Related papers (2024-03-19T17:57:52Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - GaussianHead: High-fidelity Head Avatars with Learnable Gaussian Derivation [35.39887092268696]
This paper presents a framework to model the actional human head with anisotropic 3D Gaussians.
In experiments, our method can produce high-fidelity renderings, outperforming state-of-the-art approaches in reconstruction, cross-identity reenactment, and novel view synthesis tasks.
arXiv Detail & Related papers (2023-12-04T05:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.