Can We Leave Deepfake Data Behind in Training Deepfake Detector?
- URL: http://arxiv.org/abs/2408.17052v1
- Date: Fri, 30 Aug 2024 07:22:11 GMT
- Title: Can We Leave Deepfake Data Behind in Training Deepfake Detector?
- Authors: Jikang Cheng, Zhiyuan Yan, Ying Zhang, Yuhao Luo, Zhongyuan Wang, Chen Li,
- Abstract summary: We rethink the role of blendfake in detecting deepfakes and formulate the process from "real to blendfake to deepfake" to be a progressive transition.
Our design allows leveraging forgery information from both blendfake and deepfake effectively and comprehensively.
- Score: 14.167267434669501
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The generalization ability of deepfake detectors is vital for their applications in real-world scenarios. One effective solution to enhance this ability is to train the models with manually-blended data, which we termed "blendfake", encouraging models to learn generic forgery artifacts like blending boundary. Interestingly, current SoTA methods utilize blendfake without incorporating any deepfake data in their training process. This is likely because previous empirical observations suggest that vanilla hybrid training (VHT), which combines deepfake and blendfake data, results in inferior performance to methods using only blendfake data (so-called "1+1<2"). Therefore, a critical question arises: Can we leave deepfake behind and rely solely on blendfake data to train an effective deepfake detector? Intuitively, as deepfakes also contain additional informative forgery clues (e.g., deep generative artifacts), excluding all deepfake data in training deepfake detectors seems counter-intuitive. In this paper, we rethink the role of blendfake in detecting deepfakes and formulate the process from "real to blendfake to deepfake" to be a progressive transition. Specifically, blendfake and deepfake can be explicitly delineated as the oriented pivot anchors between "real-to-fake" transitions. The accumulation of forgery information should be oriented and progressively increasing during this transition process. To this end, we propose an Oriented Progressive Regularizor (OPR) to establish the constraints that compel the distribution of anchors to be discretely arranged. Furthermore, we introduce feature bridging to facilitate the smooth transition between adjacent anchors. Extensive experiments confirm that our design allows leveraging forgery information from both blendfake and deepfake effectively and comprehensively.
Related papers
- FakeFormer: Efficient Vulnerability-Driven Transformers for Generalisable Deepfake Detection [12.594436202557446]
This paper investigates why Vision Transformers (ViTs) exhibit a suboptimal performance when dealing with the detection of facial forgeries.
We propose a deepfake detection framework called FakeFormer, which extends ViTs to enforce the extraction of subtle inconsistency-prone information.
Experiments are conducted on diverse well-known datasets, including FF++, Celeb-DF, WildDeepfake, DFD, DFDCP, and DFDC.
arXiv Detail & Related papers (2024-10-29T11:36:49Z) - Capture Artifacts via Progressive Disentangling and Purifying Blended Identities for Deepfake Detection [9.833101078121482]
Deepfake technology has raised serious concerns regarding privacy breaches and trust issues.
Current methods use disentanglement techniques to roughly separate the fake faces into artifacts and content information.
These methods lack a solid disentanglement foundation and cannot guarantee the reliability of their disentangling process.
arXiv Detail & Related papers (2024-10-14T08:04:37Z) - DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
arXiv Detail & Related papers (2024-06-19T12:35:02Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection [73.66077273888018]
Existing deepfake detection methods fail to generalize well to unseen or degraded samples.
High-level semantics are indispensable recipes for generalizable forgery detection.
DeepFake-Adapter is first parameter-efficient tuning approach for deepfake detection.
arXiv Detail & Related papers (2023-06-01T16:23:22Z) - Fooling State-of-the-Art Deepfake Detection with High-Quality Deepfakes [2.0883760606514934]
We show that deepfake detectors proven to generalize well on multiple research datasets still struggle in real-world scenarios with well-crafted fakes.
We propose a novel autoencoder for face swapping alongside an advanced face blending technique, which we utilize to generate 90 high-quality deepfakes.
arXiv Detail & Related papers (2023-05-09T09:08:49Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
Deepfake techniques in real-world scenarios require stronger generalization abilities of face forgery detectors.
Inspired by transfer learning, neural networks pre-trained on other large-scale face-related tasks may provide useful features for deepfake detection.
In this paper, we propose a self-supervised transformer based audio-visual contrastive learning method.
arXiv Detail & Related papers (2022-03-02T17:44:40Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.