A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
- URL: http://arxiv.org/abs/2408.17059v3
- Date: Thu, 31 Oct 2024 04:18:40 GMT
- Title: A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
- Authors: Asifullah Khan, Anabia Sohail, Mustansar Fiaz, Mehdi Hassan, Tariq Habib Afridi, Sibghat Ullah Marwat, Farzeen Munir, Safdar Ali, Hannan Naseem, Muhammad Zaigham Zaheer, Kamran Ali, Tangina Sultana, Ziaurrehman Tanoli, Naeem Akhter,
- Abstract summary: The application of self supervised learning (SSL) in vision tasks has gained significant attention.
We develop a comprehensive taxonomy of systematically classifying the SSL techniques.
We discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field.
- Score: 5.152455218955949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to utilize this vast amount of unlabeled data available. Thus it is better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is limited labelled data available. In this survey, we develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
Related papers
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
Severe data imbalance naturally exists among web-scale vision-language datasets.
We find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning.
The robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts.
arXiv Detail & Related papers (2024-05-31T17:57:24Z) - Self-supervised visual learning in the low-data regime: a comparative evaluation [40.27083924454058]
Self-Supervised Learning (SSL) is a robust training methodology for contemporary Deep Neural Networks (DNNs)
This work introduces a taxonomy of modern visual SSL methods, accompanied by detailed explanations and insights regarding the main categories of approaches.
For domain-specific downstream tasks, in-domain low-data SSL pretraining outperforms the common approach of large-scale pretraining.
arXiv Detail & Related papers (2024-04-26T07:23:14Z) - Can We Break Free from Strong Data Augmentations in Self-Supervised Learning? [18.83003310612038]
Self-supervised learning (SSL) has emerged as a promising solution for addressing the challenge of limited labeled data in deep neural networks (DNNs)
We explore SSL behavior across a spectrum of augmentations, revealing their crucial role in shaping SSL model performance and learning mechanisms.
We propose a novel learning approach that integrates prior knowledge, with the aim of curtailing the need for extensive data augmentations.
arXiv Detail & Related papers (2024-04-15T12:53:48Z) - Evaluating Fairness in Self-supervised and Supervised Models for
Sequential Data [10.626503137418636]
Self-supervised learning (SSL) has become the de facto training paradigm of large models.
This study explores the impact of pre-training and fine-tuning strategies on fairness.
arXiv Detail & Related papers (2024-01-03T09:31:43Z) - Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls
and Opportunities [50.231837687221685]
Self-supervised learning (SSL) has transformed machine learning and its many real world applications.
Unsupervised anomaly detection (AD) has also capitalized on SSL, by self-generating pseudo-anomalies.
arXiv Detail & Related papers (2023-08-28T07:55:01Z) - Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects [84.6945070729684]
Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks.
This article reviews current state-of-the-art SSL methods for time series data.
arXiv Detail & Related papers (2023-06-16T18:23:10Z) - Explaining, Analyzing, and Probing Representations of Self-Supervised
Learning Models for Sensor-based Human Activity Recognition [2.2082422928825136]
Self-supervised learning (SSL) frameworks have been extensively applied to sensor-based Human Activity Recognition (HAR)
In this paper, we aim to analyze deep representations of two recent SSL frameworks, namely SimCLR and VICReg.
arXiv Detail & Related papers (2023-04-14T07:53:59Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
We investigate self-supervised learning under dataset imbalance.
Off-the-shelf self-supervised representations are already more robust to class imbalance than supervised representations.
We devise a re-weighted regularization technique that consistently improves the SSL representation quality on imbalanced datasets.
arXiv Detail & Related papers (2021-10-11T06:29:56Z) - Graph-based Semi-supervised Learning: A Comprehensive Review [51.26862262550445]
Semi-supervised learning (SSL) has tremendous value in practice due to its ability to utilize both labeled data and unlabelled data.
An important class of SSL methods is to naturally represent data as graphs, which corresponds to graph-based semi-supervised learning (GSSL) methods.
GSSL methods have demonstrated their advantages in various domains due to their uniqueness of structure, the universality of applications, and their scalability to large scale data.
arXiv Detail & Related papers (2021-02-26T05:11:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.