Self-supervised visual learning in the low-data regime: a comparative evaluation
- URL: http://arxiv.org/abs/2404.17202v1
- Date: Fri, 26 Apr 2024 07:23:14 GMT
- Title: Self-supervised visual learning in the low-data regime: a comparative evaluation
- Authors: Sotirios Konstantakos, Despina Ioanna Chalkiadaki, Ioannis Mademlis, Yuki M. Asano, Efstratios Gavves, Georgios Th. Papadopoulos,
- Abstract summary: Self-Supervised Learning (SSL) is a robust training methodology for contemporary Deep Neural Networks (DNNs)
This work introduces a taxonomy of modern visual SSL methods, accompanied by detailed explanations and insights regarding the main categories of approaches.
For domain-specific downstream tasks, in-domain low-data SSL pretraining outperforms the common approach of large-scale pretraining.
- Score: 40.27083924454058
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Self-Supervised Learning (SSL) is a valuable and robust training methodology for contemporary Deep Neural Networks (DNNs), enabling unsupervised pretraining on a `pretext task' that does not require ground-truth labels/annotation. This allows efficient representation learning from massive amounts of unlabeled training data, which in turn leads to increased accuracy in a `downstream task' by exploiting supervised transfer learning. Despite the relatively straightforward conceptualization and applicability of SSL, it is not always feasible to collect and/or to utilize very large pretraining datasets, especially when it comes to real-world application settings. In particular, in cases of specialized and domain-specific application scenarios, it may not be achievable or practical to assemble a relevant image pretraining dataset in the order of millions of instances or it could be computationally infeasible to pretrain at this scale. This motivates an investigation on the effectiveness of common SSL pretext tasks, when the pretraining dataset is of relatively limited/constrained size. In this context, this work introduces a taxonomy of modern visual SSL methods, accompanied by detailed explanations and insights regarding the main categories of approaches, and, subsequently, conducts a thorough comparative experimental evaluation in the low-data regime, targeting to identify: a) what is learnt via low-data SSL pretraining, and b) how do different SSL categories behave in such training scenarios. Interestingly, for domain-specific downstream tasks, in-domain low-data SSL pretraining outperforms the common approach of large-scale pretraining on general datasets. Grounded on the obtained results, valuable insights are highlighted regarding the performance of each category of SSL methods, which in turn suggest straightforward future research directions in the field.
Related papers
- A Survey of the Self Supervised Learning Mechanisms for Vision Transformers [5.152455218955949]
The application of self supervised learning (SSL) in vision tasks has gained significant attention.
We develop a comprehensive taxonomy of systematically classifying the SSL techniques.
We discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field.
arXiv Detail & Related papers (2024-08-30T07:38:28Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
Semi-supervised learning (SSL) can leverage both labeled and unlabeled data to build a predictive model.
Recent literature suggests that naively applying state-of-the-art SSL with a pretrained model fails to unleash the full potential of training data.
We propose to use pseudo-labels from the unlabelled data to update the feature extractor that is less sensitive to incorrect labels.
arXiv Detail & Related papers (2023-09-09T01:57:14Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - Task-Customized Self-Supervised Pre-training with Scalable Dynamic
Routing [76.78772372631623]
A common practice for self-supervised pre-training is to use as much data as possible.
For a specific downstream task, however, involving irrelevant data in pre-training may degenerate the downstream performance.
It is burdensome and infeasible to use different downstream-task-customized datasets in pre-training for different tasks.
arXiv Detail & Related papers (2022-05-26T10:49:43Z) - DATA: Domain-Aware and Task-Aware Pre-training [94.62676913928831]
We present DATA, a simple yet effective NAS approach specialized for self-supervised learning (SSL)
Our method achieves promising results across a wide range of computation costs on downstream tasks, including image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2022-03-17T02:38:49Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
We investigate self-supervised learning under dataset imbalance.
Off-the-shelf self-supervised representations are already more robust to class imbalance than supervised representations.
We devise a re-weighted regularization technique that consistently improves the SSL representation quality on imbalanced datasets.
arXiv Detail & Related papers (2021-10-11T06:29:56Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained
Classification [38.68079253627819]
Our benchmark consists of two fine-grained classification datasets obtained by sampling classes from the Aves and Fungi taxonomy.
We find that recently proposed SSL methods provide significant benefits, and can effectively use out-of-class data to improve performance when deep networks are trained from scratch.
Our work suggests that semi-supervised learning with experts on realistic datasets may require different strategies than those currently prevalent in the literature.
arXiv Detail & Related papers (2021-04-01T17:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.