RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2404.00610v1
- Date: Sun, 31 Mar 2024 08:58:54 GMT
- Title: RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation
- Authors: Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, Jie Fu,
- Abstract summary: Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
- Score: 42.82192656794179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses. This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios. To tackle these challenges, Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process, thus leveraging non-parametric knowledge alongside LLMs' in-context learning abilities. However, existing RAG implementations primarily focus on initial input for context retrieval, overlooking the nuances of ambiguous or complex queries that necessitate further clarification or decomposition for accurate responses. To this end, we propose learning to Refine Query for Retrieval Augmented Generation (RQ-RAG) in this paper, endeavoring to enhance the model by equipping it with capabilities for explicit rewriting, decomposition, and disambiguation. Our experimental results indicate that our method, when applied to a 7B Llama2 model, surpasses the previous state-of-the-art (SOTA) by an average of 1.9\% across three single-hop QA datasets, and also demonstrates enhanced performance in handling complex, multi-hop QA datasets. Our code is available at https://github.com/chanchimin/RQ-RAG.
Related papers
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback [19.28222902440827]
Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters.
Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge.
We propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model's problem-solving capabilities.
arXiv Detail & Related papers (2024-03-11T16:01:05Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
In this study, we introduce a framework that leverages Dual Queries and Low-rank approximation Re-ranking to automatically select exemplars for in-context learning.
DQ-LoRe significantly outperforms prior state-of-the-art methods in the automatic selection of exemplars for GPT-4, enhancing performance from 92.5% to 94.2%.
arXiv Detail & Related papers (2023-10-04T16:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.