論文の概要: Improving Extraction of Clinical Event Contextual Properties from Electronic Health Records: A Comparative Study
- arxiv url: http://arxiv.org/abs/2408.17181v1
- Date: Fri, 30 Aug 2024 10:28:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 15:38:25.342425
- Title: Improving Extraction of Clinical Event Contextual Properties from Electronic Health Records: A Comparative Study
- Title(参考訳): 電子健康記録からの臨床的事象文脈特性の抽出の改善 : 比較研究
- Authors: Shubham Agarwal, Thomas Searle, Mart Ratas, Anthony Shek, James Teo, Richard Dobson,
- Abstract要約: 本研究は,医学テキスト分類のための様々な自然言語モデルの比較分析を行う。
BERTはBi-LSTMモデルを最大28%、ベースラインのBERTモデルを最大16%上回り、マイノリティクラスをリコールする。
- 参考スコア(独自算出の注目度): 2.0884301753594334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic Health Records are large repositories of valuable clinical data, with a significant portion stored in unstructured text format. This textual data includes clinical events (e.g., disorders, symptoms, findings, medications and procedures) in context that if extracted accurately at scale can unlock valuable downstream applications such as disease prediction. Using an existing Named Entity Recognition and Linking methodology, MedCAT, these identified concepts need to be further classified (contextualised) for their relevance to the patient, and their temporal and negated status for example, to be useful downstream. This study performs a comparative analysis of various natural language models for medical text classification. Extensive experimentation reveals the effectiveness of transformer-based language models, particularly BERT. When combined with class imbalance mitigation techniques, BERT outperforms Bi-LSTM models by up to 28% and the baseline BERT model by up to 16% for recall of the minority classes. The method has been implemented as part of CogStack/MedCAT framework and made available to the community for further research.
- Abstract(参考訳): 電子健康記録(Electronic Health Records)は貴重な臨床データの大規模なリポジトリであり、かなりの部分は構造化されていないテキスト形式で保存されている。
このテキストデータには、臨床イベント(例えば、障害、症状、発見、薬品、処置)が含まれており、スケールで正確に抽出すれば、病気の予測のような貴重な下流の応用を解き放つことができる。
既存の名前付きエンティティ認識とリンク手法であるMedCATを使用することで、これらの概念は、患者との関係性、例えば、時間的および否定的な状態が下流で有用であるために、さらに分類(コンテキスト化)する必要がある。
本研究は,医学テキスト分類のための様々な自然言語モデルの比較分析を行う。
大規模な実験により、トランスフォーマーベースの言語モデル、特にBERTの有効性が明らかにされた。
クラス不均衡緩和技術と組み合わせると、BERTはBi-LSTMモデルを最大28%、ベースラインBERTモデルを最大16%上回り、マイノリティクラスをリコールする。
このメソッドは、CogStack/MedCATフレームワークの一部として実装され、さらなる研究のためにコミュニティで利用できるようになった。
関連論文リスト
- Transfer Learning with Clinical Concept Embeddings from Large Language Models [4.838020198075334]
大言語モデル (LLMs) は, 臨床的概念の意味を捉える重要な可能性を示している。
本研究では,2つの大規模医療システムからの電子健康記録を分析し,セマンティック埋め込みが局所的,共有的,移動的学習モデルに与える影響を評価する。
論文 参考訳(メタデータ) (2024-09-20T20:50:55Z) - SNOBERT: A Benchmark for clinical notes entity linking in the SNOMED CT clinical terminology [43.89160296332471]
本稿では,BERT モデルを用いた SNOMED CT のテキストスパンと特定の概念をリンクする手法を提案する。
本手法は, 候補選択と候補マッチングの2段階からなる。これらのモデルは, ラベル付き臨床ノートの公開データセットの中で, 最大規模で訓練された。
論文 参考訳(メタデータ) (2024-05-25T08:00:44Z) - Knowledge Graph Embeddings for Multi-Lingual Structured Representations
of Radiology Reports [40.606143019674654]
本稿では,新しい軽量グラフベースの埋め込み手法,特に放射線学レポートのキャタリングについて紹介する。
報告書の構造と構成を考慮し、報告書の医療用語を接続する。
本稿では,X線レポートの疾患分類と画像分類という2つのタスクにこの埋め込みを組み込むことについて述べる。
論文 参考訳(メタデータ) (2023-09-02T11:46:41Z) - Hierarchical Pretraining for Biomedical Term Embeddings [4.69793648771741]
階層データに基づく新しいバイオメディカル用語表現モデルであるHiPrBERTを提案する。
HiPrBERTは階層的な情報からペアワイズ距離を効果的に学習し,さらにバイオメディカルな応用に極めて有用な埋め込みを実現できることを示す。
論文 参考訳(メタデータ) (2023-07-01T08:16:00Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - Estimating Redundancy in Clinical Text [6.245180523143739]
臨床医は、既存のメモを複製し、それに従って更新することで、新しい文書をポップアップさせる。
情報冗長性の定量化は、臨床物語を扱う革新を評価する上で重要な役割を果たす。
冗長性を測定するための2つの戦略として,情報理論アプローチと語彙論的・意味論的モデルを提示し,評価する。
論文 参考訳(メタデータ) (2021-05-25T11:01:45Z) - An Interpretable End-to-end Fine-tuning Approach for Long Clinical Text [72.62848911347466]
EHRにおける非構造化臨床テキストには、意思決定支援、トライアルマッチング、振り返り研究を含むアプリケーションにとって重要な情報が含まれている。
最近の研究は、これらのモデルが他のNLPドメインにおける最先端の性能を考慮し、BERTベースのモデルを臨床情報抽出およびテキスト分類に応用している。
本稿では,SnipBERTという新しい微調整手法を提案する。SnipBERTは全音符を使用する代わりに,重要なスニペットを識別し,階層的に切り刻まれたBERTベースのモデルに供給する。
論文 参考訳(メタデータ) (2020-11-12T17:14:32Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。