Efficient Multi-task Prompt Tuning for Recommendation
- URL: http://arxiv.org/abs/2408.17214v1
- Date: Fri, 30 Aug 2024 11:38:51 GMT
- Title: Efficient Multi-task Prompt Tuning for Recommendation
- Authors: Ting Bai, Le Huang, Yue Yu, Cheng Yang, Cheng Hou, Zhe Zhao, Chuan Shi,
- Abstract summary: We propose a novel two-stage prompt-tuning MTL framework (MPT-Rec) to address task irrelevance and training efficiency problems.
MPT-Rec achieves the best performance compared to the SOTA multi-task learning method.
- Score: 44.494367787067006
- License:
- Abstract: With the expansion of business scenarios, real recommender systems are facing challenges in dealing with the constantly emerging new tasks in multi-task learning frameworks. In this paper, we attempt to improve the generalization ability of multi-task recommendations when dealing with new tasks. We find that joint training will enhance the performance of the new task but always negatively impact existing tasks in most multi-task learning methods. Besides, such a re-training mechanism with new tasks increases the training costs, limiting the generalization ability of multi-task recommendation models. Based on this consideration, we aim to design a suitable sharing mechanism among different tasks while maintaining joint optimization efficiency in new task learning. A novel two-stage prompt-tuning MTL framework (MPT-Rec) is proposed to address task irrelevance and training efficiency problems in multi-task recommender systems. Specifically, we disentangle the task-specific and task-sharing information in the multi-task pre-training stage, then use task-aware prompts to transfer knowledge from other tasks to the new task effectively. By freezing parameters in the pre-training tasks, MPT-Rec solves the negative impacts that may be brought by the new task and greatly reduces the training costs. Extensive experiments on three real-world datasets show the effectiveness of our proposed multi-task learning framework. MPT-Rec achieves the best performance compared to the SOTA multi-task learning method. Besides, it maintains comparable model performance but vastly improves the training efficiency (i.e., with up to 10% parameters in the full training way) in the new task learning.
Related papers
- Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks [51.15473776489712]
We introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks.
Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task.
Experimental results demonstrate that training on a small set of tasks, chosen solely on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard.
arXiv Detail & Related papers (2024-04-25T08:49:47Z) - PEMT: Multi-Task Correlation Guided Mixture-of-Experts Enables Parameter-Efficient Transfer Learning [28.353530290015794]
We propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning.
We conduct experiments on a broad range of tasks over 17 datasets.
arXiv Detail & Related papers (2024-02-23T03:59:18Z) - Efficient Rehearsal Free Zero Forgetting Continual Learning using
Adaptive Weight Modulation [3.6683171094134805]
Continual learning involves acquiring knowledge of multiple tasks over an extended period.
Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks.
Our approach attempts to maximize the performance of the new task, while ensuring zero forgetting.
arXiv Detail & Related papers (2023-11-26T12:36:05Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Exploring the Role of Task Transferability in Large-Scale Multi-Task
Learning [28.104054292437525]
We disentangle the effect of scale and relatedness of tasks in multi-task representation learning.
If the target tasks are known ahead of time, then training on a smaller set of related tasks is competitive to the large-scale multi-task training.
arXiv Detail & Related papers (2022-04-23T18:11:35Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Knowledge Distillation for Multi-task Learning [38.20005345733544]
Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation.
Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics.
We propose a knowledge distillation based method in this work to address the imbalance problem in multi-task learning.
arXiv Detail & Related papers (2020-07-14T08:02:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.