Exploring the Role of Task Transferability in Large-Scale Multi-Task
Learning
- URL: http://arxiv.org/abs/2204.11117v1
- Date: Sat, 23 Apr 2022 18:11:35 GMT
- Title: Exploring the Role of Task Transferability in Large-Scale Multi-Task
Learning
- Authors: Vishakh Padmakumar, Leonard Lausen, Miguel Ballesteros, Sheng Zha, He
He, George Karypis
- Abstract summary: We disentangle the effect of scale and relatedness of tasks in multi-task representation learning.
If the target tasks are known ahead of time, then training on a smaller set of related tasks is competitive to the large-scale multi-task training.
- Score: 28.104054292437525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has found that multi-task training with a large number of diverse
tasks can uniformly improve downstream performance on unseen target tasks. In
contrast, literature on task transferability has established that the choice of
intermediate tasks can heavily affect downstream task performance. In this
work, we aim to disentangle the effect of scale and relatedness of tasks in
multi-task representation learning. We find that, on average, increasing the
scale of multi-task learning, in terms of the number of tasks, indeed results
in better learned representations than smaller multi-task setups. However, if
the target tasks are known ahead of time, then training on a smaller set of
related tasks is competitive to the large-scale multi-task training at a
reduced computational cost.
Related papers
- Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
Multitask learning is widely used to train a low-resource target task by augmenting it with multiple related source tasks.
A critical problem in multitask learning is identifying subsets of source tasks that would benefit the target task.
We introduce an efficient procedure to address this problem via surrogate modeling.
arXiv Detail & Related papers (2023-03-25T23:16:11Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Knowledge Distillation for Multi-task Learning [38.20005345733544]
Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation.
Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics.
We propose a knowledge distillation based method in this work to address the imbalance problem in multi-task learning.
arXiv Detail & Related papers (2020-07-14T08:02:42Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.